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Abstract

We analyze geometrical structures necessary to represent bulk and surface interactions of standard
and substructural nature in complex bodies. Our attention is mainly focused on the influence of diffuse
interfaces on sharp discontinuity surfaces. In analyzing this phenomenon, we prove the covariance of
surface balances of standard and substructural interactions.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Bodies are calledomplexwhen their material substructure (i.e. the texture from nano-
level to meso-level) has a prominent influence on their gross behavior and there is a not
negligible occurrence of interactions due to substructural changes. Examples are liquid
crystals, elastomers, ferroelectric and microcracked bodies, spin glasses. Above all, soft
condensed matter displays complex behavior. Applications in nanotechnology, smart struc-
tures and various fields of technology open basic theoretical and experimental problems that
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challenge, in a certain sense, even some aspects of the foundational concepts of standard
continuum mechanics.

Basically, the standard paradigm of Cauchy’s format of continuum mechanics, prescrib-
ing that the material element is a sort of indistinct sphere that we collapse in a pointin space
seems to be not sufficient to account for the articulated substructural nature of a complex
body.

In fact, for complex bodies the material element is rather a ‘system’ and one needs
the introduction of an appropriat@orphological descriptow of such a system (order
parameter), atleast at a coarse grained level, that describes the essential geometrical features
of substructural shapes.

Physical circumstances of disparate nature suggest many possible choigesaoh
one characterizing special models. Moreover, the selection of morphological descrip-
tors is strongly related with the representation of substructural interactions arising within
each material element and between neighboring material elements as a consequence of
substructural changes. Interactions are represented in fact by objects conjugated in the
sense of power with the rates of the quantities describing the geometry of the body
and its changes. In this sense, since placement and order parameter fields are involved,
the description of complex bodies adopted here is catfedtifield It has basic dif-
ferences with standard internal variable models. In a multifield approach, morpholog-
ical descriptors enter directly the geometrical representation of the body and its kine-
matics; true interactions are associated with their rates and balanced. Information about
the material substructure are then introduced already at the level of geometrical de-
scription of the body. On the contrary, in standard internal variable models, the ge-
ometrical description of the body is of Cauchy’s type: the material element is mor-
phologically equivalent to an indistinct sphere described just by its place in space.
There, internal variables come into play to describe just the removal from thermody-
namical equilibrium (a detailed treatment of these classes of models can be found in
[34]).

Here, by following the general unified framework of multifield theories proposed by
Capriz in 1989[4] (see alsq3]) and then developed further on in its abstract struc-
ture [32,23,8,9] we do not specify the nature of We require only thav be an ele-
ment of a finite-dimensional differentiable paracompact manifetdwithout boundary
to cover a class as large as possible of special theories. Our attention is then focused on
the general setting which contains as special cases prominent theories interpreting prob-
lems typical of condensed matter physics. In a certain sense our work deals with a model
of models. However, in our general point of view, we face the basic difficulty Mat
does not coincide with a linear space in general. Moreover, we cannot consider a priori
M embedded in a linear space. In fact, since the possible embedding of a finite dimen-
sional manifold in a linear space is not unique, its potential choice is of constitutive na-
ture.

We focus our attention on conservative processes. For them, the relevant appropriate
Hamiltonian formalism has been developeddhas a natural evolution of the Hamiltonian
formalism in classical non-linear elasticity (the one discussd&ii). We start from the
results in[9] and analyze some of the rather subtle geometrical questions induced by the
abstract nature of1.
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Our essential point of view is as in what follows: “Geometry and mechanics associated
with maps between manifolds are a general framework for condensed matter physics and
are also a tool to construct new models of unusual and perhaps unexpected phenomena”
[25].

Here, we focus the attention on the interaction between diffuse interfaces and addi-
tional sharp discontinuity surfaces. From one hand, in fact, in complex bodies there is
a frequent occurrence of branching of substructures between domain walls and/or ho-
mophase gradient effects. The presence of the gradient of the morphological descriptor
v in the list of entries of the Lagrangian density allows us to account for these effects
‘smearing’ them as due to diffused interfaces. However, from the other hand, additional
macroscopic surfaces of discontinuity may also occur and evolve. They are due to defects
such as crack, shock or acceleration waves; their evolution is influenced by the presence
of diffused interfaces due to substructural arrangements. As an example one may con-
sider a polarized ferroelectric material in which external loads induce a shock wave: the
shock front encounters walls of polarized domains and interact with them. Also, such do-
main walls influence the propagation of surface defects like cracks, as experiments point
out.

In general, when sharp discontinuity surfaces are endowed with own energy, they are
referred to astructured on the contrary they amenstructuredWe analyze here both cases
paying attention to the nature of interface balances of standard and substructural actions
that involve the jump of bulk stresses and, in the structured case, surface stresses. Really,
interface balances involving standard surface stresses have been obtajh@Hvitile
surface substructural measures of interactions have been introdu¢2®, 28] and the
relevant balance equations derived there (see[8]30However, there is no proof of their
covariance. Such a proof is provided herd@reorem 2and is the main result of this paper.

It implies a non-standard notion of observer, which is, for us, not only the representation
of the ambient space and the time scale, but also the representation of the manifold of
substructural shapes (see d28]).

The technique of the proof is based on the validity of an integral balance of energetic
nature. In the case of unstructured discontinuity surfaces, such a balance is just the integral
version of Noether theorem in the bulk and arises naturally from invariance properties of
the Lagrangian density. In the structured case, such a balance is augmented by the energetic
contribution of the discontinuity surface given in terms of a superficial flux of energy the
physical nature of which is discussed in Section

In Section 2 we discuss the natural way to represent the morphology of com-
plex bodies (a way necessary when the prominence of substructural interactions ren-
ders not efficient standard homogenization techniques). We describe the use of mor-
phological descriptors to represent the geometry of substructural shapes and discuss
up to a certain extent the nature of the space of maps assigning to each material el-
ement its morphological descriptor. In SectiBnwe start to construct mechanics by
assigning a Lagrangian density in which substructural gradient effects are taken into
account and recall fronf9] the version of Noether theorem appropriate to multifield
descriptions of complex bodies. Finally, Sectidncontains the main result, i.e. the
proof of the covariance of interfacial balances of standard and substructural interac-
tions.
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2. Morphology of complex bodies

We consider a body occupying a regular regiyof the three-dimensional Euclidean
spacec?® (with affine translation space Vet)The current morphology of the body is de-
scribed by two sufficiently smooth mappings:

Bos X x=%(X) € &, Bos X v =#(X) e M. @)

1. X showsthe curremiacementfa material element & in By, is injective and orientation
preserving, and = x(5p) is also regular afp.

2. visthe map assigning to each material element a coarse gramgthological descriptor
v(X) of its substructure (order parameter), chosen as an element of a differentiable
paracompact manifold1 (generally without boundary).

Two natural tangent maps arise, namgg: T8p — TBandTv : TBy — TM. The pairs

(X, VX), (v, Vv) are the peculiar elements 6k andTv respectively. Sinc& By is a trivial
bundle and a connection is natural over it, we can separate in invariamtfingag Vx which

is commonly indicated witl. The condition thak be orientation preserving implies that,
ateachX e By, F € Hom(Tx Bo, Tx(x)B) has positive determinar®inceM is a priori not
trivial, the pair ¢, Vv) cannot be separated in invariant way, unless there is a parallelism
over M. In principle, one may define in abstract way a parallelism gvebut, since the

pair (v, Vv) enters constitutive issues, one should have a physically significant parallelism.
In other words, when we act separating in invariant Wayfrom v we should presume to
have at least one physically significant parallelism o¢reven when circumstances may
allow us the use of invariance requirements with respect to the choice of the connection. In
fact, the presence of the pair, (Vv) or of arbitrarily one element of it (namelyor Vv) in

the list of entries of the energy changes the representation of interactions.

Asremarkedinthe introduction, in dealing with the geometrical (morphological) descrip-
tion of complex bodies, we relax one of the axioms of the mechanics of simple materials. In
our picture, in fact, the material element is not morphologically equivalent to a ‘monad’, a
simple material particle in the sense of Cauchy (88¢30]), identified only by its place in
space. Instead, we consider the body as a collectieulofystemsf the samenature (the
material substructure) and the order parameter at a given point represents the characteristic
features of the morphology of the subsystem there.

Sometimes the material substructure is a perfectly identifiable Lagrangian system as in
the case of nematic liquid crystdls4,20,11](in which stick molecules can be separated
from the melt), sometimes it does not as in granular ggesnd microcracked bodi¢26].

In granular gases, e.g., a material element collects a family of sparse granules with peculiar
velocities, so that the order parameter could be an element of a suitable Grassmanian of
the tangent bundle of some finite-dimensional manifold, while for microcracked bodies
each microcrack can be considered either as a sharp planar defect not interpenetrated by

1 with the adjective ‘regular’ we refer to an open (bounded) subséf afoinciding with the interior of its
closure, with a surface-like boundary where the outward unit nomisalwell-defined everywhere to within a
finite number of corners and edges. The treatment of infinite bodies requires only some minor technical adjustments
in the results of the present paper. In any case, some remarks about them are presented throughout the paper.
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interatomic bonds or as an elliptic void, so it does not exist per se but it is just determined
by the surrounding matter.

We leave undetermined the specific nature ¢d cover a class as large as possible of
special cases, following in this way the unifying point of view of Cajiz Our primary
strategy is to work with minimal requirements & and to add geometrical structure to it
only when necessary.

In this way we avoid the path leading to a collection of special models with slightly
different formal aspects but with the same intrinsic nature.

With respect to elasticity of simple bodies (§@&], Chapter 4), here the main source
of difficulties is the circumstance that is a non-trivial manifold; in particulat does not
coincidewith a linear space in most cases of prominent interest.

The spac€ of pairs of maps¥, v), a product space of the typg x C,, withX pertaining
to Cx andv to C,,, has a non-trivial structure which depends on the geometrical properties of
M. Basically, we imagine tha, < WL7(Bo, Vec) for somep > 1andC, = PC(Bg, M),

i.e. we require that the order parameter map be at least continuous and piecewise continu-
ously differentiable ovelBp, while X be an element of the Sobolev spaké? (8o, Vec), even

if we may basically require th&be continuous and piecewise continuously differentiable
too.

Specific examples showing the possible intricate natut® wf particular ofC,, can be
discussed at length.

We analyze below the case in which physical circumstances justify a Riemannian struc-
ture for M. However, the developments in subsequent sections do not require strictly such
a structure that will be called upon only when necessary.

In any case, even whet is Riemannian, we do not assign a priori any prevaléle r
to Levi—Civita connection.

2.1. The case in whicM has a Riemannian structure: aspects of the naturé of

We assume just in this section th&d be Riemannian with metrigy, and associated
Levi—Civita connection.

Notice thatwe do not require here the embeddinghdfin some linear spacéVhen, in
fact, we embed\ in alinear space by using, let say, Nash’sisometric embedding to preserve
at least the quadratic part of the kinetic energy (if it exists) pertaining to the substructure,
the embedding is not unique. So, the choice of it becomes matter of modeling. Moreover,
the embedding is also not strictly necessary to build up the structures needed for the basic
aspects of mechanics. For this reason, with the aim to eliminate overstructures as much as
possible, we consided in its abstract setting, not embedded a priori in a linear space.

We denote with(-, -)7r¢ the scalar product ovef, M associated witlg,,. For any
Cl-curve [Qs*] 3 s —> v(s) € M, we have a vector field(s) = (dv/ds)(s), and for any
other vector fieldA (s) over M one defines its derivative aloag— v(s) writing (DA /ds) =
Vu(s)A, and callA autoparallel along — v(s) when (DA /ds) = O for anys € [0, s*]. As
usual,s —> v(s) is ageodesiavhens —> v(s) is autoparallel along it.

The Riemannian structure assures the existence of a natural digignca1t x M —
R+ overM. Infact, by indicating withk any arbitrary piecewis€? curvex : [0, s*] — M
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such thati(0) = v1 andA(s*) = vy, as usual we put

dm(vy, v2) = inf{i(2)}, (2)
varying A betweerv; andwy, with /(1) the length
i (1/2)
0= (50.50) o @
0

(see, e.gl1] Chapter 2[33] Chapter 4 ). Locallyd, is calculated over geodesics and may
be unbounded. Inthis case, we select a new métisic M x M — R* overM defined by

dy = M )

which is equivalent ta\4 (it leads to the same topology), is bounded, is of cES¥M),

if dpq is complete oM, thend is complete too. Moreover, the following statements are
equivalent: (i)d is complete, (ii) closed bounded sets with respeetgpare compact,
(iii) geodesics ford g can be continued as to be defined on the whole real [it&,(p.
56). If M is complete, the distane&,, can be computed over geodesics not only locally,
but also globally.

Remark 1. WhenM is compactdas : M x M — R* is bounded, then itis not necessary
to substitute it withd v4.

By making use ofi s we may define three natural distances a¥er
1. The first metric distance, indicated wif), may be defined by
aOn52) = [ du(or,v2)d(voD, ©)
0
where (i) stands for ‘integral’.

2. Let{K,} be an exhaustion dfp , i.e. a compact cover dfy such thatk, C I°<,,+1 for
anyn. A second distance, indicated wiiff), may be defined by

RCHPEDY

neN

o qax dm(v1, v2). (6)
where €) stands for ‘compact’.
3. More simply, a third natural distance, indicated wifR, may be defined by

d®)#1, %2) = supdum(vi, v2), ©)
XeBy

where §) stands for ‘supremum’.

Remark 2. There is a peculiar physical difference between the mefficand the other

two: the exhaustion dfy by compact sets, used to defiff€, implies that the values of the
order parameter map over boundary point8gmay contribute slightly to the distance in
C,, on the contrary of the other two metrics. In a certain sed§tseems to be preferable
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when there are uncertainties in the physical meaning of boundary datawalagottoblem
(the one of boundary data) that appears very subtle for some material substructures like
microcracks.

Remark 3. Notice thatd(® andd(® are complete ove€(By, M) if dr is complete. In
particular, compactness @# is sufficient for the validity of this statement.

Remark 4. The space of continuous maps betw#grand M, namelyC(Bgy, M), may be

in generahot completavith respect to the metri¢(). Examples can be constructed when

M is not compact and when it is compact. Just to mention a simple case, let us consider a
body coinciding with a cube made of a porous solid containing superfluid helium for half
of the volume of voids. coincides withS® ¢ C, thus it is compact). In this case we may
construct a sequendg e C(Bo, M) that converges in the metritf!) to a discontinuous
function describing the percolation of Helium up to saturate half of the cube.

Remark 5. The metricd® in (5) may furnish unreasonable results for unbounded bodies.
In fact, if we consider an infinite beam made of a two-phase mateviia{ [0, 1]), we may
found two distributions of the two phases (Sayandv; with v the volume fraction of one
phase) differing just by mirror symmetry such ta& (91, ¥2) = +oo. In the same casé®
andd‘® (see(6) and (7) furnish bounded results.

To control the behavior of the derivatives ob, basically of Vv with
Vv = Vi(X) € Hom(Tx Bo, T, M), we find problematic to act directly on Hoip, T M).
In fact, when we seledt; andv,, at a givenX, we get in generab; # v, So that we get
Vv1 € Hom(Tx By, T,,, M) and Vva € Hom(Tx Bo, T,,/M). Thoughgu, induces natural
metric structures ovef* M and tensor product bundles &M and T*M, it does not
give a natural way of comparingv, and Vv, becauseVy is in certain sense like the
two-point tensoF. To compare them it is then necessary to transgegtovervs through
a connection oiVv; over vy. Since we do not assign any prevaledlerto Levi—Civita
connection, even in the case in whigh is complete and we may connegtandv, with
a geodesic, we face the circumstance that the transport is in general not isometric, so that
the comparison (defined in some way) of the two derivativeg atay lead to a different
result of the same comparisonigt Moreover, the transport could be unbounded or the
bound could not be uniform over the curve connectgvith vo. The possible choice
to consider admissible only values ou&f that can be connected by curves assuring a
uniformly bounded transport could reduce too much the generalityt of

By considering previous remarks, we consider first the adjoiMigindicated withv v*
and such tha¥v* = Vv*(X) € Hom(7;; M, Ty Bo), then we define

dm(Vv1, Vvp) = [ ViV — VeV, @)

where| - || is the usual norm ifR® ® R3, i.e. the usual norm of % 3 matrices such that,
for anyA € R®® R3, one hag/A| = /tr(ATA) and Vi* V¥ is the pull-back inBg of the
metricgag in M, in coordinatesY{v* V) p = szjg“(gM)aﬂsz‘Z.

Remark 6. JM(Vvl, Vv,) compares values of the metrigy, at two different points
(namelyv; andvy) of M. The scalar produdtv; Vs - (dX ® dX)isthe ‘length’ of d atv;.
With d4 as above, we define the counterparts of the distafes7).
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4. The first distance, indicated with) , is defined by
dO(V¥q, Vi) = / dam(Vvi, Vo) d(vol). (9)
Bo

5. Let{K,} be an exhaustion d8p, i.e. a compact cover dfp such thatk,, C I°<n+1 for
anyn. The second distance, indicated wi{9, is defined by

AV, Vig) =)
neN

maxda(Vvi, Vvy). 10
5 Jax M(Vvi, Vp) (10)

6. More simply, a third natural distance, indicated witR, can be defined by

dS(V¥1, Vo) = supdu(Vvr, Vvy), (11)
XEBQ

when sug .z, d remains bounded ovédo.
Remark 7. We do not introduce any ‘normalization’ of the distance like the on&)n
becaus€9)—(11)are calculated over bundles whose fibers are linear spaces gq that)

displays possible properties of homogeneity (natural over fiber spaces) while a normaliza-
tion like (4) would not.

Appropriate topologies 06, may then be induced by the distances

d0 (51, 50) = dV (31, 92) + aVd D (Vi1, Vy), (12)
dO(51, 53) = dO(B1, 52) + aOdO(V1, Viy), (13)
d®(B1, 92) = dO 1, 32) + a®dO(V1, V), (14)

wherea®, a(© anda'® are constants introduced to adjust physical dimensions; they are of
the type [engrh)?.

Remark 8. When M is per se a linear space or for reasons of modeling is embedded
isometrically in a linear space, the result§2hand[18] apply directly to characterize the
topological properties of the spa€e

2.2. Something more about kinematics

Motions are sufficiently smooth curves overFor a given interval of time [a], we then
have mappings [Q] > 7 —> (X, V;) € C and indicate withx = X(X, r) andv = »(X, r) the
current place atof a material element resting dtwhent = 0 and the current value of the
order parameter.

With x andv we denote rates given byXddr)(X, r) and (d/dr)(X, r) respectively, with
v € Tyx,)M. They have counterparisandv in the current placé given by

Bx[0,7]5 (X 1) v =¥(x, 1) € TxB (15)

and

Bx[0,7]5 (X, )5 v = B(X, 1) € Tsgepx.. )M, (16)
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obtained through the mapping — x = X(X) at eachr. We havex =v butv =v +
(gradv)v and we may write also = v 4 (Vv)F v = v — (Vv)X whereX is the material
velocity —F~1v associated with the inverse mappiXg= X~1(x, ¢). For the acceleration of
the order parameter we have

v = 9 +Ff3 VY a7
with
%, = 395500 (@r)ps + 0,6(TM)ys — 3,5(AM)py) (18)

Christoffel symbols relevant fo¥1. The expressiofl7)enters the representation of possible
inertial terms pertaining to the substructdre.

Let g be the metric in the ambient space (in general, for curved frames wexhave
g(x), i.e.g depends on the place), by indicating with the transpose d¥, the mapping

Bo > X — (FTF) = C(X) € Sym" (TxBo, T Bo) (19)

is the pull-back ofg through the deformatiox and in coordinates we hav€sp =
(F7)y8ijFp- i

If y is the ‘material’ metric (even flat) inByg (i.e. Bo> Xy =p(X) €
Symt(Vec, Vec)), the difference — y)(X) is twice the non-linear deformation tensor
E(X) measuring relative changes of lengths by udbgags paragon setting. In an alterna-
tive point of view, we may considé? as paragon setting pushing forwarénd comparing
lengths there as explained in all treatises on non-linear elasticity of simple bodies in chapters
dealing with measures of deformation.

In the case of complex bodies the matter may be more intricate and a general (in certain
sense abstract) treatment of measures of deformation seems to be absent (the only exception
being the basic remarks [B]). The key point is the specific nature ofIn fact, whenv
represents, e.g., a microdisplacement, an independent rotation or an independent deforma-
tion, its gradient enters the measures of deformation togethemitiblf. On the contrary,
whenv describes a property not related strictly with changes of lengths (say in the case in
which v represents the volume fraction of a phase in a two-phase material or the sponta-
neous polarization in ferroelectrics, etc.), standardndE, or their spatial counterparts,
are sufficient to measure the macroscopic deformation.

In general, we could imagine to have a map of the type

(F, g, v, Vv) — G(F, g, v, Vv) € Sym" (Tx Bo, Ty Bo) (20)

with G a metric inBBg involving the pull-back ofy, and to define a deformation tende(X)
as (¥2)(G — y)(X), erasingv and/orVv each time in which circumstances suggest such a
cancellation.

Of course, the information furnished (80)is rather volatile unless we put it in a context
specifying its nature for some particular substructure.

Remark 9. Cosseraf10] and micromorphid28] materials are well-known classes of
complex bodies in which the order parameter (or its gradient) affects the representation of

2 The influence o on inertia is discussed {7].
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the measures of deformation (see also essential remafk$)inn the former class each
material element is pictured as a ‘small’ rigid body that may undergo rotations independent
of the surrounding material elements. Of course, neighboring relative rotations may alter
lengths, in a sense described e.g[1i@] or [4]. In the latter class one imagines that each
material element may suffer independent deformations (it is like a ball of rubber). Measures
of relative deformations may be then introduced. Less popular is the case of microcracked
bodies and we give some details about it in order to construct an explicit example of the
possible influence of the order parameter and its gradient on the measures of deformation.
In fact, when microcracks are smeared throughout a body, the material element is pictured
as a ‘patch’ of matter endowed with a population of microcracks that can be considered
either as planar sharp defects not interpenetrated by interatomic bonds or as elliptic voids
with non-null volume and one dimension very small with respect to the others. If we
considerfrozenthe microcracks in a given material element placed &t B, a standard
deformatiork puts it (or better its centre of mass) in the place X(X). Now, if we allow

the microcracks to deform (say without growing irreversibly for the sake of simplicity),
the centre of mass of each material element undergoes in principle atehiéird a new
placex’. If we indicate with3" the minimal regular region containing the collection of

x’, each one corresponding to eachwe may imagine to obtai#8’ from B by means

of a sufficiently smooth mappingsuch thatx’ = (f o X)(X) and{(B) = B'. By denoting

with grad the gradient with respect 0 as before, by chain rule we g&i(f o X)(X) =
((gradf) vK)(X) = FMF, where F™M = (gradf)(x) is the gradient of deformation from

Bto B, ie. F™ = Hom(yB, T, B). If we indicate withd(X) = (§ o X)(X) — X(X) the
displacement fronx to x’, defined as a field oveBp, since Vd(X) = (gradd,)F, with

d, = do %1, we get the additive decompositiof(f o X)(X) = F + Vd(X). If we write

Fiot = F + Vd(X), Fo is the gradient of deformation from8g to B'. So that the right
Cauchy-Green tens@ioi(X) = Fg,tFtot involvesVd. Moreover, by comparing the additive
decomposition of i with the multiplicative one, namelF(™F, we realize thafE(™M =

| + Vd(X)F~! = | + gradd,. The direct (perhaps naive) description of the kinematics of
microcracked bodies just sketched here folld2%,26} however, it can be obtained by
using the procedure involving the limit of bodies describeflliy13].

2.3. Observers

Three geometrical environments are necessary to describe the motion of a complex body:
the time interval [07], the ambient spac&® (of course&? or £ if we deal with two- or
one-dimensional bodies) aud.

In classical mechanics an observer izpresentatiorof the measure of time and the
ambient space so that changes of observers are changes of representation.

Here, our point of view is that the notion of observer should involve all the descriptors of
the morphology of the body and its motion. Then, forarspbserve) is a representation
of (i) the interval of time, (ii) the ambient spaéand (iii) the manifoldM of substructural
shapeg25].

3 Here the circumstance that there is a population of microcracks in the material element and that each microcrack
is not a spheric void is crucial.
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Such a definition is a natural extension of the standard point of view including just (i)
and (ii): it takes into account the presence of the manifbldof substructural shapes as
natural geometric ingredient in the representation of the body.

For the sake of simplicity we shall consider observers coinciding about the measure of
time.

General changes of observers, as used below, will then involve automorphfSrarud
the action of arbitrary Lie groups ové!. In this sense the notion of change of observers
involves the pair of one-parameter families of transformations indicated below.

Al RY 5 57— 2 € Aut(£3), with fZ the identity* We assume that eathis sufficiently
smooth and pwg’(x) = v, where the prime denotes differentiation with respecpto

A2. A Lie groupG, with Lie algebrag, acts overM. If & € g, its action ovew € M is
indicated withé A((v). By indicating withv, the value ofv after the action og € G,
if we consider a one-parameter smooth cukve> s3 — g, € G overG, such that
& = (dgy,/ds3)|s,=0, and its corresponding curyg —> vg,, OVErM, starting from a
givenv, we haves v (v) = (d/d53)vgs3|‘93:0.

We specify for future use in special cases the relations characterizing ‘rigid’ changes of
observers, i.e. the ones characterized by the contemporary action of SQ{3)aom £3.
The latter action is induced by standard isometric transformations of point space.
Let[0,7] > 1 —> Q(r) € SO(3), withQ(0) =ldso(3) Id the identity, be a smooth curve
on SO(3). Let als@ be an assigned representationSdfat r = 0. At anyr # 0 we may
associate an observ@, obtained fromO by means of(r). The transformation fron® to
O, is isometric, then a point seen by is mapped in a poirnt’ = w(r) + Q(r)(x — Xo),
wherer — w(r) is an arbitrary point valued function smooth in time a@d fixed point
chosen at will in space. If we calculate the ratexofnd pull-back it inO writing x* for
Q'X/, we get the standard relation

X" =X+ c(t) + g A (X —Xop), (21)

characterizing a classical change of observer, wheseQ"w is the translational velocity
and(q the rotational one (it can be considered as the action of SE(3) over Vec, the affine
translation space oveéP). If the elementy of the Lie algebrao(3), selected arbitrarily

in (21), acts also on\, at eachw it induces a rate (that we call ‘rigid’, with the subscript
R, just for reminding the circumstance that it is related to a spatial rigid body motion)
given by Aq € T, M, whereA(v) e Hom(Veg 7, M). If v, denotes the value ofafter the
action of SO(3) oveM, we haveA = (dv,/dqg)|q = 0, whereq is a vector connected with

Q € SO(3) by the formul® = exp(—eq), with e Ricci's permutation index. For example,
let M be coincident withs? as in the case of magnetostrictive materials). Foragys?,

we getrq = Qr,thend = —zA. Thenthe corresponding change in observer corresponding
to (21)is given by

P = b+ Aq. (22)

4 Aut(£3) is the group of automorphisms &f.
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In a multifield settingglassicalchanges in observers coinciding about the measure of time
are then given by21) and (22)

2.4. Relabeling

Another transformation playing a role below is ttetabeling of material elements in
the reference placBgy. With the term ‘relabeling’ we indicate a generic transformation
of B induced by aCl(Bo) point valued mapping?® such that (i) it isisocoric (i.e. the
volume is preserved) and (ii) establishes also a diffeomorphism beti&gandf(5p).
From a physical point of view, the important part of the actiorf bfelies in a sort of
‘permutation’ of possible defects or, better, inhomogeneitieSgnin particular, we will
consider a one-parameter family of such isocoric diffeomorphisms defined below:

A3. Rt 5 51 — fl € SDiff(Bo) is a smooth curve witlig the identity; at each; we
get Xr—fl (X), with DivfY(X) = 0, where the prime denotes differentiation with
respect to the parameter. We putfg/(X) =Ww.

3. Lagrangian 3+1 forms and balance equations

The multifield theoretical analogue of the theory of elasticity for complex bodies (i.e.,
bodies with material substructure) relies on rather articulated fiber bundles.

We start by considering a fiber bundte: ) — Bo x [0, 7] such thatz~1(X, ) =
£3 x M. A generic section; € I'()) of Y is thenn(X, 1) = (X, t, x, v). For sufficiently
smooth sections, the first jet bundlg) over Y is such that/*Y s j1(n)(X, 1) =
X, t,x, %, F, v, v, Vv).

Up to this point the discussion has been purely geometric. No issues related with the
constitutive nature of the body and with the interactions arising inside it have been discussed.
They enter into play here: we assume that the general body under examination is made of
(non-linear) elastic material. In this case we may associate with it the canonical Lagrangian
3+ 1form

L:JYY — A3(By x [0, 7]). (23)

The definition of the elements of the space of 3 formsA3+1(By x [0, 7]) would require
some care. In factBy x [0, 7] is a manifold with boundary coinciding only witf0} x

Bo U {1} x By (because3 is open and coincides with the interior of its closure), while
the definition of odd forms is immediate on manifolds without boundary. However, one is
commonly interested in evaluating the variation of the total Lagrangian

L(5o) = fB RGO (24)

so that, in defining.(;j1(5)), possible problems related with boundary points do not play
any role.L admits the structure

L(j*()(X, 1)) = L(X, X, X, F, v, b, Vv) d®X A dr (25)
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with
LX, %, %, F, v, v, V) = 300 X1 + pox(v. v) — poe(X, F, v, Vv) — pow(x, v),
(26)

wherepg is the referential mass density (conserved during the motjotie substructural
kinetic co-energyneeded when physical circumstances prescribe substructural inertia),
the elastic energy density amdthe density of the potential of external actions, all per unit
mass. The presence ofin the list of entries ofy ande is due to the non-trivial structure
of M. In general the elements &fM cannot be separated invariantly unless a parallelism
can be found oveM. From classical non-linear field theories we know thaisappears
from the list of entries oé due to reasons of invariance, butloes not (seft]).
We assume thaf(-) be sufficiently smooth so that we may find at least one seetion

satisfying Euler—Lagrange equations

L = 9L — Div oL, (27)

3L = 3,L — DV dv, L. (28)
With respect to the families of transformations characterizing relabeling and changes of ob-

servers, for the sake of brevity, we indicate viithf 2 andv, the values (X), f2 (x), v, (X)-

Definition 1. £ is invariant with respect to the action @f, f2 andG if

L(X, X, X, F,v, v, Vv)

= L(f1, 12, (gradf?)x, (gradf2)F(VEL) ™1, v, vy, (Vi) (VEH D), (29)

foranyg € G andsy, s» € R™.
Let Q@ and§ bescalarandvectordensities given respectively by

Q=KL (Vv—Fw)+ 3L Epm) — (Vr)w), (30)

§ = LW+ (FL)T(V — Fw) + (0v,.0)* (Em(v) — (Vr)w), (31)
where v, L)* € Hom(T, M, TxBo) and L) € Hom(TxB, Tx Bo).

Theorem 1 (Capriz and Mariang9]). If £ is invariant underfsll, fsz2 and G, foranyg € G
andsy, s € R, then

Q+Divg=0. (32)
The detailed proof is contained j@]. Here we remind only that it is based on a direct

explicit calculation of the terms i(82) on the basis of30) and (31)and on the exploitation
of the relations

d
d_Sl£|S1:0,s2:0,se,:O = 07 d_sz‘ClS]_:O,Sz:O,S;;:O = Os
d
d_s3£|S1:0,S2:O,S3:0 - 0’ (33)

which are consequences of the request of invariancg for
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The following corollaries hold true for any Lagrangian density of the (g8 which is
invariant in the sense @efinition 1 [9]:

Corollary 1. If f‘fz alone acts orC leavingv arbitrary, from (32) we get Cauchy balance
of momentum

poX = pob + Div P, (34)

whereP = —9r L € Hom(Tx Bo, Ty B) is the first Piola—Kirchhoff stress angb = L €
Ty B the vector of body forces

Corollary 2. If G arbitrary acts alone orC, from (32) and the arbitrariness of the element
& of the Lie algebra of Gchosen to defingy(v)) we get Capriz balance of substructural
interactions

po(x — dvx) = =2+ poB™ + Div S, (35)

in covariant way where pof™ = —pod,w € T*M represents bulk non-inertial external
interactions acting on the substructu = —adv, L € Hom(Ty Bo, T, M) takes into ac-
count contact substructural interactions between neighboring material eler(eemdsis
called microstressandz = —ppd,e € T; M indicates self-interactions of the substructure
in each material elemerfand is called self-force

Corollary 3. LetG = SO(3)and for any elemengn of its Lie algebraff2 be such that
vV = g A (X — Xo) with xg a fixed point in spacdn other words we require that the same
copy ofSO(3)acts both on the ambient space and.bh If we require the invariance af
with respect to the action of the special choices of G &hjdist mentionedwe obtain

skw(@eF") = e(ATdye + (VAT dyye), (36)

wheree is Ricci’s alternator andskw(:) extracts the skew-symmetric part of its argument.
The previous statement render more perspicuResiark 3of [9].

Corollary 4. If fsl1 alone acts orc, with w arbitrary, from (32) we get

(FToxL +.(VV)*3i:E) — Div(P — (3p0X12 + pox(v, »))I) — dx L =0, 37)

whereP = pgel — FTP — (Vv)*S € Aut(T¢Bp), with | the second order unit tensois

the modified Eshelby tensor for continua with substructure derived in the general setting
in [22,23] In particular, (37) coincides with the balance of configurational forces for a
continuum with substructure in absence of dissipative internal forces driving defects. The
balance(37), in fact, is only a consequence of the invariance with respect to relabeling

Corollary 5. LetG = SO(3)and for any elemengA of its Lie algebraf}l be also such
thatw = g A (X — Xp) with Xg a fixed point inBp. If the material is homogeneouand
only such special choices tf[ and Gact onZ, P is symmetric

Remark 10. It may be asked whether or not an integral versio(88f can be postulated as
integral balance principle of substructural interactions and then used as a first principle. In
general the answer is negative unl@gsis a linear space or is embedded in a linear space.
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The reason relies upon the circumstance that the eventual integ8andsd Sn would

take values irf™* M which is a non-linear space unless the above mentioned situations of
linearity for M occur, so the integrals are not defined. In other words, each time we use
an integral version of35) we presume implicitly an embedding in a linear space; on the
contrary it does not make sense.

4. Discontinuity surfaces

In common special cases, solutions(a¥) and (28)or, with other notations, of34)
and (35)are not smooth and may display discontinuities concentrated on submanifolds
of codimension 1. Moreover, experiments display domain formation and branching of mi-
crostructures of various nature (see e.g. cases of nematic order in liquid crystals, polarization
in ferroelectrics, magnetization in micromagnetics, superconducting domains, etc.).

The presence of the gradient of the morphological descriptor in the list of entries of
the energy accounts for the presence of interfaces of domain walls in a smeared sense.
However, one may ask what happens when additional discontinuity surfaces occur and
there isinteraction between smeared and sharp interfadesan example, the us consider
the solidification of a two-phase floj24]. Two types of interfaces occur in this case:
interfaces between the two phases of the fluid that interact with the interface between solid
and fluid parts (when it is considered as a sharp interface) and influence its evolution.

Really, even in single phase complex materials the energy may depend on the gradient
of the order parameter to account for the inhomogeneous behavior of substructures. For
example, in the case of micromorphic materials, each material element is a cell that may
undergo micro-deformation independently of the neighboring cells, in addition to the partic-
ipation to the overall macroscopic deformati@8]. The morphological descriptor is then
a second-order symmetric tensor representing such an additional independent deformation.
Such a situation may be representative of the behavior of elastomers, for example. Adja-
cent material elements may then undergo in principle different micro-deformations so that,
in going from one element to the other, the energetic landscape changes in accord to the
gradient of the micro-deformation and weakly non-local interaction effects of gradient type
between neighboring material elements may be accounted for. Even in this case, additional
discontinuity surfaces may occur as defects or shock and acceleration waves. Energetic
effects associated with the gradient of the micro-deformation may influence them.

Analogous situation occurs also in quasicrystals where collective atomic modes (pha-
son degrees of freedom) ocaowithin each crystalline cell (the material element) and are
represented by a stretchable vector. The energy depends both on the standard strain and the
gradient of such a vect@81]. Even in this case, discontinuity surfaces such as (e.g.) cracks,
dislocations or shock waves may intervene. Their behavior is influenced by the energetic ef-
fects associated with the gradient of the order parameter (here the vector mentioned above)
but they are not strictly modeled by means of it.

The physical examples above allow us to clarify the point of view followed bealdsv.
treat, in fact, situations in which smeared interfaces or gradient effects due to inhomoge-
neous behavior of material substructures interact with sharp interfaces or, more generally,
discontinuity surfaces
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In particular, we focus our attention on a single discontinuity surfadefined by
¥ = {X € clBy, f(X) =0}, (38)

with fa smooth function with non-singular gradient. Itis oriented by the normal vector field
¥ 5 X+ m = m(X) = V £(X)/|V f£(X)| and we use the notatidi for the second order
tensol —m® m.

For any fielde(-) continuous and piecewise continuously differentiabl&owe indicate
with Ve its surface gradienat X, with e = ¢(X), given byVye = VelIl. The opposite of
the surface gradient @, namely—Vym is indicated withL and is the curvature tensor.

Let X —> a = a(X) be a generic field taking values in a linear space and suffering
bounded discontinuities across Fore > 0 we indicate witha™ the limits lim,_, g a(X +
em) which are the outera(") and inner {~) traces ofa at =. Then we denote withd] =
a®t — a~ the jump ofaacross® and with 2a) = a* + a™ its average there, so that for any
pair of fieldsa1 anda, with the same properties afwe have fi1az] = [a1]{a2) + {(a1)[a2]
if the productaias is defined in some way and is distributive.

¥ is coherentwhen the jump of the gradient of deformatibr(see Sectio2) satisfies
the relation F]IT = O, otherwise it is calleéhcoherent In other words the two pieces of
the body separated by the surface do not suffer relative shear.

Moreover, if we attribute any ‘virtual’ motion t& by means of a vector fiel@ >

X+ u = {i(X) € R3 with normal component/ = u - m and assume that the velocity
may suffer bounded jumps acrosswe get the conditionq] = —U[F]m, whose proof is
textbook affairs.

As essential point we assume also that the morphological descriptdr imepntinuous
acrossx. A special case in which such an assumption plays a prominent role is Landau’s
theory of phase transitions.

4.1. The unstructured case

We treat first the case in which is unstructured, i.e. it is free of own surface energy.
We derive the balance equations acr@isim a way that prove theicovariancewhich has
been not discussed so far. The procedure we adopt relies upon the exploitation of an integral
version of the pointwise relatiof32).
We callpartany regular subsétof 5o with non-vanishing volume measure. We consider
an arbitrary parby crossingx in a way in which the intersection of its boundaiys, with
¥ be a piecewise smooth curve and write for it the integral counterpé&Byfnamely
d Qd*X + | F-ndH2=0, (39)
dr Joy oy
with dH? the two-dimensional Hausdorff measure oveg.. If we take fixed the parby
with respect to the virtual motion &, by the use of the transport and Gauss theorems (see,
e.0.[27,35)), asby — by N X we find

d / oX > — [ [QUdHA, (40)
dt Jos brNE



C. de Fabritiis, P.M. Mariano / Journal of Geometry and Physics 54 (2005) 301-323 317

/ F-ndH? — [3] - mdH2, (41)
by byNZ

so that the arbitrariness of; implies the pointwise balance
—[QIU +[3] -m=0. (42)

Proposition 1. If the transformations A1A2, A3 (seeSections2.3 and2.4) are smooth
throughout the bodythe validity of(42) and the invariance of imply covariant pointwise
interfacial balances acrosy as in the list below

1. The action ofsz2 alone implies the interfacial balance of standard interactions

[PIm = —po[X]U. (43)
2. The action of G alone implies the interfacial balance of substructural interactions
[SIm = —po[0y x]U. (44)

3. The action of}1 alone implies the interfacial configurational balance along the normal
m in absence of dissipative forces drivig namely

m - [PIm = poU[(V»)*;x] - M + 3p0lx(v, )] — 300U%[|Fm?]. (45)
The proof is obtained by exploitin@?2) and is contained in the one ®heorem 2
Balance equations at unstructured discontinuity surfaces in standard elasticity of simple

bodies are derived by means of a direct evaluation of the variation of the total Lagrangian
in [15].

4.2. The structured case

We consider her& endowed with asurface energy density associated with surface
tensions of standard and substructural nature. The presegcmofiels the circumstance
that often we have discontinuity thin layers that sustain surface tensions instead of pure
surfaces.

LetF andN be defined by

F=(FI, N=(VnIl. (46)

They aresurface deformation gradieandsurface gradient of the morphological descriptor
atX. There exist then two mappln@‘sandN such that

5 X b F = F(X) € Hom(Tx =, Ty B). (47)
¥ 5 X5 N = N(X) € Hom(Ix S, T, M). (48)

Elementary algebra provides us

(Fy=F+ (Fym)®m, (49)
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(Vv) =N+ ((Vv)m) @ m. (50)

The surface energy density is then defined by

(m, F, v,N) i’> ¢ =¢(m,F, v, N) (51)

and we assume that be sufficiently smooth. It is worth noting that the presence of the
normalm in the list of entries of points out that we are consideriagisotropic surfaces

We require thenvarianceof ¢ with respect to (i) general changes of observers and (i)
relabeling of%.

As discussed above, changes of observers are characterized by the action of the group
of automorphisms of® and of a generic Lie group ove¥l. However, definition A3 ofsll
(in Section2.4) needs to be modified in order to describe the relabeling of addition
to the overall relabeling oBp. Instead ofs; —— fsll we should consider a smooth curve
51> fsll in S Diff( Bp) characterized by the properties listed below.

Relabeling of3p including .

1. The maps1 —> fsll satisfies A3 (in Sectio2.4). Moreover, we require that the field

Bo 3 X — w = W(X) = f}'(X) is at least of clas€(By), then it is continuous across
b))

2. Eachfsll preserves the elements of ares&xbfNamely, if dA is the element of area &

in Bo, fsll* o dA = dA, where the asterisk indicates push forward.
3. (Vwm = 0.
4. Vsw,, = 0, withw,, = w - m andVy, the surface gradient defined above.
Two lemmata are useful for subsequent calculations.
Lemma 1. For any isocoric vector field(-) of classC(Bp),
M- Vgw = (VW)m) - m, (52)
withw = W(X).

The result follows from direct calculation.
A second order tensor fiel 5 X —>A A = A(X) € Hom(R3, R3) is calledsuperficial
if Am = 0 at eachX.

Lemma 2. For any second-order superficial tensor fillcon =, one gets
m-DivzcA=A-L, (53)
with L the curvature tensor af, as defined above

Definition 2. A surface energy densityis invariant with respect to the actionfjj above
andfZ, G in Section2.3if

d(m, F, v, N) = $(ViLTm, (grads f)F(VEL) 2, vy, N (vEH ™D, (54)

foranyg € G andsy, s» € R, whereN, = (Vv,)IT and we have used notations common
to Definition 1
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Let X be a sufficiently smooth vector density defined oXdny
X =—¢TIw + (354)" (v — (F)W) + (NG (Em(¥) — (V)W) — (dm¢ ®@ m)w,  (55)

where gr¢)" € Hom(TxB, Tx £) and Pno)* € Hom(T, M, Tx X).

The definition of¥ (not used elsewhere) deserve physical clarifications. First we come
back to(39) reminding also the definition@0) and (31)pf Q andg. In fact, Eq.(39)is a
balance between the rate of a sort of ‘production’ of ‘relative’ inertigsirand an energetic
flux across its boundar§by. The term ¢ — Fw) is actually the difference in the current
placement of the body between the virtual velocity induced dgnd the push forward
(by means of the gradient of deformatiéf of the virtual rate of relabelingv. Similar
interpretation has the differencéag(v) — (Vv)w) over the manifoldM of substructural
shapes. Moreover, when multiplied by the norméb db s, the terms (§£)T(v — Fw)) - n
and (OvvL)*(Em(v) — (Vv)W)) - n are respectively the power of the Piola—Kirchhoff stress
and of the microstress (see also corollaries afteeorem ] developed in the relative
velocities ¢ — Fw) and Exq(v) — (Vv)w). Finally, Lw - n is the flux of energy acrosiy
associated with the rate of relabeling.

When the surfac& has energy content (as in the structured case treated here), the balance
(39)is insufficient to represent the energetic landscape ar@yrs that one is pushed to
insert the energetic contribution associated with the ener@y. dhen, one needsurface
counterpartsof @ and§. Of course, the counterpart ¢ does not exist becauseis not
endowed withindependeninertia. On the contrary, the counterpartiofloes exist because
¥ is endowed with own energy. It coincides withX.

By indicating within(-) the normal vector field along the piecewise smooth catbg N
¥) such that, at eack € d(bx N X) where it is well defined, the vector= n(X) belongs
to the tangent plane t& at X, the productX - n is a surface energetic flux along the
tangent plane t& at eachX € d(bx N ¥) wheren is defined. In particular-¢Ilw - nis the
flux of surface energy with respect to the virtual flow generated/pwhile ((Orp)™ (v —
(F)w)) - n and (Ono)*(Em(v) — (Vv)W)) - n are respectively the power of the standard
surface stress and the surface microstress (as it will be cl@&eiorem 2 developed in the
relative velocities\{ — (F)w) and € (v) — (Vv)w). Finally, the term (§m¢ ® m)w) - nis
the surface power of the shear stress arising from the anisotrapy of

In summary, the construction @f accrues from a strict physical analogy wihlefined
in (31).

Below, d~* will denote the one-dimensional Hausdorff measure alifhg N ).

Theorem 2. Let X be a structured surface with surface eneygy et us assume

d
—/ Qd3x+/ S-nd?—l2+/ X-ndil=0 (56)
dt Jyy, db (b5

for any partby, of By crossingX. If £ and¢ are invariant with respect t(ﬁ}l fsz2 and G,
covariant pointwise balances acrossfollow as in the list below:

1. The action off2 alone implies the interfacial balance of standard interactions

[PIm + DivyT = —po[X]U, (57)
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whereT = —dr¢ € Hom(Ty =, T B) is the surface Piola—Kirchhoff stress
2. The action of G alone implies the interfacial balance of substructural interactions

[S]m + DivsS — 3 = —po[ds x]U. (58)

whereS = —dn¢ € Hom(Ty X, T, M) is the surface microstress agd= d,¢ € T, M
the surface self-force

3. The action ofsl1 alone implies the interfacial configurational balance along the normal

m in absence of dissipative forces driviayy namely
m - [Plm + Cign- L 4+ Divge
= poU[(Vv)* 3y x] - M + pol x(v, »)] — 3p0U[|IFM|?], (59)
where
Cran = ¢I1 — F'T — N*S (60)
is a generalized version of the surface Eshelby stress and
¢ =—dm¢ — TT{F)M — S*(Vv)m (61)

is a surface shear

By following different procedures, E¢57) has been derived i1 7] while Eqgs.(58) and
(59)in [22,23](the version of59)for simple bodies is clearly obtained[ib6]). Here, with
Theorem 2 we prove their covariance: this is the main novelty of the theorem itself.

4.3. Proof of Theorem 2

Step 1. In accord toDefinition 2, sinceg is invariant, we have

d.~, . - .

d_Y_‘L(ﬁ(Vf 1Tm1 (gradz fz)]F(Vf 1)717 vgs Ng(Vf 1)71)|S1:0,82:0,S3:O = Oa (62)
d-~, . - .

&, P T, (grads FF(VEY) ™, ve, No(VEH) ™) l5120.5=0.55=0 = O, (63)
d-~, . - .

d—ssqs(w”m, (grads fPF(VED) ™ v, No(VE) ™)y 20.55=055-0 = O, (64)

which correspond respectively to

F'T- Vsw + N*S - VW + dmé - (YW)m = 0, (65)

T-Vgv=0, (66)

3-6m) +S- Vsém(v) =0. (67)

They will be useful tools below.
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Step 2. If we shrinkby, to by N X uniformly in time, transport and Gauss theorems (see
also(40) and (41) allow us to obtain the pointwise balance
—[QIU +[§] - m + DivsX =0, (68)
thanks to the arbitrariness bf. Of course, the sole difference betwd€8) and (42)s the
term Divg X accounting for the interfacial structure of the surfate

Step 3. Deduction of the referential interfacial balance of standard interacti&fslf f2
acts alone, then

x=T"v, Q=px-v, F=-P'v. (69)
Moreover, thanks t¢66) we get
DivsX =v-DivgT. (70)

Then, from(68) we obtain(57) thanks to the arbitrariness of which is continuous across
2.

Step 4. Deduction of the referential interfacial balance of substructural interacf®)s
If G acts alone, then

X=S%m), Q=podix-Em), T=-S"m(). (71)
Moreover, thanks t§67) we get
DivsX = &pq(v) - (DivsS — 3). (72)

Then, from(68) we obtain(58) thanks to the arbitrariness of the eleméselected in the
Lie algebra ofG.

Step 5. Deduction of the balance of configurational forces along the nonm@le. (59)).
If 1 acts alone, then

Q = —pFT%- W — po(Ve)*dx - W, (73)

F = ((3polXI* + pox(v, M) — B)w (74)
and, after some algebra,

X =—-ChLw—cw, (75)

with Cian andc defined respectively b§60) and (61)andw,, = w - m.

Now, Eqg.(68)comes into play: we will evaluate the component alongf the right-hand
side term 0f(68), a vector, by taking also into account the arbitrariness.of
First we write

—[QIU +[3] - m = polFTXIU - W + pol(V»)* 35 x]U - W
+ 3polIX[ZJw - m + po[x(v, W)]w - m — [P]w - m. (76)
Moreover, by using65) andLemma 1 we also get

Divs(ClLW + cwy,) = W - (DivyCran + (Divsc)m). (77)
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Of course, in obtaining77), properties 3 and 4 of the definition of the relabelfﬂg)f Bo
including = play a crucial role.
By inserting(76) and (77)n (68), thanks to the arbitrariness of we obtain

polFTXIU + pol(V¥)* 3, x]U + 3 polIXI2Im + polx(v. ¥)]lm
= [PT]m + DivgCtan + (Divgc)m (78)

and we shall evaluate the component alamgf (78).
First we focus our attention on terms involvirgandv. Let us introduce the averaged
velocity v given by

V= (X)+ U(Fym. (79)
With the help of the relation] = —U[F]m introduced previously, we then get
polFTXU - m = polX] - V — po[IXI%); (80)

in other words the normal component of the vegigF ' x]U is equal tominusthe jump
of the relative kinetic energy (2)[po|x — V|?] as it is simple to verify.
Still taking into account the relatiox] = —U[F]m and the definition of, we also find

300lIXI?] = —polX] - V + 3U2[IFm[]. (81)

Now, by evaluating the normal component(@8), using(80), (81)and taking into account
thatm - DivyCian = Cian - L as a consequencelofmma 2 we obtain(59)and the theorem
is proven.

Remark 11. (Fields of applicability ofProposition land Theorem 2. The results col-
lected inProposition JandTheorem Zan be applied in various physical circumstances in
condensed matter physics, involving the evolution of sharp defects. In particular,3vhen
evolves irreversibly a dissipative driving force must be add€d %y and (59)the physical
reasons are clearly explained[i6,17] for simple bodies; the case of complex bodies is
treated in22,23]). Examples are listed below.

1. Cracks in complex bodies.

2. Sharp interfaces between paraelectric and ferroelectric phases.
3. Evolution of sharp damage fronts.
4

. Sharp interfaces between isotropic and oriented (e.g. nematic) phases (e.g. in liquid

crystals).
5. Solidification of complex fluids.
6. Growing defects in biological tissues.
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