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Abstract

We analyze geometrical structures necessary to represent bulk and surface interactions of standard
and substructural nature in complex bodies. Our attention is mainly focused on the influence of diffuse
interfaces on sharp discontinuity surfaces. In analyzing this phenomenon, we prove the covariance of
surface balances of standard and substructural interactions.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Bodies are calledcomplexwhen their material substructure (i.e. the texture from nano-
level to meso-level) has a prominent influence on their gross behavior and there is a not
negligible occurrence of interactions due to substructural changes. Examples are liquid
crystals, elastomers, ferroelectric and microcracked bodies, spin glasses. Above all, soft
condensed matter displays complex behavior. Applications in nanotechnology, smart struc-
tures and various fields of technology open basic theoretical and experimental problems that
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challenge, in a certain sense, even some aspects of the foundational concepts of standard
continuum mechanics.

Basically, the standard paradigm of Cauchy’s format of continuum mechanics, prescrib-
ing that the material element is a sort of indistinct sphere that we collapse in a point in space
seems to be not sufficient to account for the articulated substructural nature of a complex
body.

In fact, for complex bodies the material element is rather a ‘system’ and one needs
the introduction of an appropriatemorphological descriptorν of such a system (order
parameter), at least at a coarse grained level, that describes the essential geometrical features
of substructural shapes.

Physical circumstances of disparate nature suggest many possible choices ofν, each
one characterizing special models. Moreover, the selection of morphological descrip-
tors is strongly related with the representation of substructural interactions arising within
each material element and between neighboring material elements as a consequence of
substructural changes. Interactions are represented in fact by objects conjugated in the
sense of power with the rates of the quantities describing the geometry of the body
and its changes. In this sense, since placement and order parameter fields are involved,
the description of complex bodies adopted here is calledmultifield. It has basic dif-
ferences with standard internal variable models. In a multifield approach, morpholog-
ical descriptors enter directly the geometrical representation of the body and its kine-
matics; true interactions are associated with their rates and balanced. Information about
the material substructure are then introduced already at the level of geometrical de-
scription of the body. On the contrary, in standard internal variable models, the ge-
ometrical description of the body is of Cauchy’s type: the material element is mor-
phologically equivalent to an indistinct sphere described just by its place in space.
There, internal variables come into play to describe just the removal from thermody-
namical equilibrium (a detailed treatment of these classes of models can be found in
[34]).

Here, by following the general unified framework of multifield theories proposed by
Capriz in 1989[4] (see also[3]) and then developed further on in its abstract struc-
ture [32,23,8,9], we do not specify the nature ofν. We require only thatν be an ele-
ment of a finite-dimensional differentiable paracompact manifoldM without boundary
to cover a class as large as possible of special theories. Our attention is then focused on
the general setting which contains as special cases prominent theories interpreting prob-
lems typical of condensed matter physics. In a certain sense our work deals with a model
of models. However, in our general point of view, we face the basic difficulty thatM
does not coincide with a linear space in general. Moreover, we cannot consider a priori
M embedded in a linear space. In fact, since the possible embedding of a finite dimen-
sional manifold in a linear space is not unique, its potential choice is of constitutive na-
ture.

We focus our attention on conservative processes. For them, the relevant appropriate
Hamiltonian formalism has been developed in[9] as a natural evolution of the Hamiltonian
formalism in classical non-linear elasticity (the one discussed in[27]). We start from the
results in[9] and analyze some of the rather subtle geometrical questions induced by the
abstract nature ofM.
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Our essential point of view is as in what follows: “Geometry and mechanics associated
with maps between manifolds are a general framework for condensed matter physics and
are also a tool to construct new models of unusual and perhaps unexpected phenomena”
[25].

Here, we focus the attention on the interaction between diffuse interfaces and addi-
tional sharp discontinuity surfaces. From one hand, in fact, in complex bodies there is
a frequent occurrence of branching of substructures between domain walls and/or ho-
mophase gradient effects. The presence of the gradient of the morphological descriptor
ν in the list of entries of the Lagrangian density allows us to account for these effects
‘smearing’ them as due to diffused interfaces. However, from the other hand, additional
macroscopic surfaces of discontinuity may also occur and evolve. They are due to defects
such as crack, shock or acceleration waves; their evolution is influenced by the presence
of diffused interfaces due to substructural arrangements. As an example one may con-
sider a polarized ferroelectric material in which external loads induce a shock wave: the
shock front encounters walls of polarized domains and interact with them. Also, such do-
main walls influence the propagation of surface defects like cracks, as experiments point
out.

In general, when sharp discontinuity surfaces are endowed with own energy, they are
referred to asstructured; on the contrary they areunstructured. We analyze here both cases
paying attention to the nature of interface balances of standard and substructural actions
that involve the jump of bulk stresses and, in the structured case, surface stresses. Really,
interface balances involving standard surface stresses have been obtained in[17] while
surface substructural measures of interactions have been introduced in[22,23] and the
relevant balance equations derived there (see also[8]). However, there is no proof of their
covariance. Such a proof is provided here inTheorem 2and is the main result of this paper.
It implies a non-standard notion of observer, which is, for us, not only the representation
of the ambient space and the time scale, but also the representation of the manifold of
substructural shapes (see also[25]).

The technique of the proof is based on the validity of an integral balance of energetic
nature. In the case of unstructured discontinuity surfaces, such a balance is just the integral
version of Noether theorem in the bulk and arises naturally from invariance properties of
the Lagrangian density. In the structured case, such a balance is augmented by the energetic
contribution of the discontinuity surface given in terms of a superficial flux of energy the
physical nature of which is discussed in Section4.

In Section 2 we discuss the natural way to represent the morphology of com-
plex bodies (a way necessary when the prominence of substructural interactions ren-
ders not efficient standard homogenization techniques). We describe the use of mor-
phological descriptors to represent the geometry of substructural shapes and discuss
up to a certain extent the nature of the space of maps assigning to each material el-
ement its morphological descriptor. In Section3 we start to construct mechanics by
assigning a Lagrangian density in which substructural gradient effects are taken into
account and recall from[9] the version of Noether theorem appropriate to multifield
descriptions of complex bodies. Finally, Section4 contains the main result, i.e. the
proof of the covariance of interfacial balances of standard and substructural interac-
tions.
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2. Morphology of complex bodies

We consider a body occupying a regular regionB0 of the three-dimensional Euclidean
spaceE3 (with affine translation space Vec).1 The current morphology of the body is de-
scribed by two sufficiently smooth mappings:

B0 � X
x̃�−→ x = x̃(X) ∈ E3, B0 � X

ν̃�−→ ν = ν̃(X) ∈M. (1)

1. x̃ shows the currentplacementof a material element atX inB0, is injective and orientation
preserving, andB = x(B0) is also regular asB0.

2. ν̃ is the map assigning to each material element a coarse grainedmorphological descriptor
ν̃(X) of its substructure (order parameter), chosen as an element of a differentiable
paracompact manifoldM (generally without boundary).

Two natural tangent maps arise, namelyT x̃ : TB0 → TB andT ν̃ : TB0 → TM. The pairs
(x, ∇x), (ν, ∇ν) are the peculiar elements ofT x̃ andT ν̃ respectively. SinceTB0 is a trivial
bundle and a connection is natural over it, we can separate in invariant wayx from∇xwhich
is commonly indicated withF. The condition that̃x be orientation preserving implies that,
at eachX ∈ B0, F ∈ Hom(TXB0, Tx̃(X)B) has positive determinant. SinceM is a priori not
trivial, the pair (ν, ∇ν) cannot be separated in invariant way, unless there is a parallelism
overM. In principle, one may define in abstract way a parallelism overM but, since the
pair (ν, ∇ν) enters constitutive issues, one should have a physically significant parallelism.
In other words, when we act separating in invariant way∇ν from ν we should presume to
have at least one physically significant parallelism overM even when circumstances may
allow us the use of invariance requirements with respect to the choice of the connection. In
fact, the presence of the pair (ν, ∇ν) or of arbitrarily one element of it (namelyν or ∇ν) in
the list of entries of the energy changes the representation of interactions.

As remarked in the introduction, in dealing with the geometrical (morphological) descrip-
tion of complex bodies, we relax one of the axioms of the mechanics of simple materials. In
our picture, in fact, the material element is not morphologically equivalent to a ‘monad’, a
simple material particle in the sense of Cauchy (see[29,30]), identified only by its place in
space. Instead, we consider the body as a collection ofsubsystemsof thesamenature (the
material substructure) and the order parameter at a given point represents the characteristic
features of the morphology of the subsystem there.

Sometimes the material substructure is a perfectly identifiable Lagrangian system as in
the case of nematic liquid crystals[14,20,11](in which stick molecules can be separated
from the melt), sometimes it does not as in granular gases[6] and microcracked bodies[26].
In granular gases, e.g., a material element collects a family of sparse granules with peculiar
velocities, so that the order parameter could be an element of a suitable Grassmanian of
the tangent bundle of some finite-dimensional manifold, while for microcracked bodies
each microcrack can be considered either as a sharp planar defect not interpenetrated by

1 With the adjective ‘regular’ we refer to an open (bounded) subset ofE3 coinciding with the interior of its
closure, with a surface-like boundary where the outward unit normaln is well-defined everywhere to within a
finite number of corners and edges. The treatment of infinite bodies requires only some minor technical adjustments
in the results of the present paper. In any case, some remarks about them are presented throughout the paper.
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interatomic bonds or as an elliptic void, so it does not exist per se but it is just determined
by the surrounding matter.

We leave undetermined the specific nature ofν to cover a class as large as possible of
special cases, following in this way the unifying point of view of Capriz[4]. Our primary
strategy is to work with minimal requirements forM and to add geometrical structure to it
only when necessary.

In this way we avoid the path leading to a collection of special models with slightly
different formal aspects but with the same intrinsic nature.

With respect to elasticity of simple bodies (see[27], Chapter 4), here the main source
of difficulties is the circumstance thatM is a non-trivial manifold; in particularit does not
coincidewith a linear space in most cases of prominent interest.

The spaceC of pairs of maps (̃x, ν̃), a product space of the typeCx × Cν, with x̃ pertaining
toCx andν̃ toCν, has a non-trivial structure which depends on the geometrical properties of
M. Basically, we imagine thatCx ⊆ W1,p(B0, Vec) for somep ≥ 1 andCν = PC1(B0,M),
i.e. we require that the order parameter map be at least continuous and piecewise continu-
ously differentiable overB0, whilex̃be an element of the Sobolev spaceW1,p(B0, Vec), even
if we may basically require thatx̃ be continuous and piecewise continuously differentiable
too.

Specific examples showing the possible intricate nature ofC, in particular ofCν, can be
discussed at length.

We analyze below the case in which physical circumstances justify a Riemannian struc-
ture forM. However, the developments in subsequent sections do not require strictly such
a structure that will be called upon only when necessary.

In any case, even whenM is Riemannian, we do not assign a priori any prevalent rôle
to Levi–Civita connection.

2.1. The case in whichM has a Riemannian structure: aspects of the nature ofC

We assume just in this section thatM be Riemannian with metricgM and associated
Levi–Civita connection.

Notice thatwe do not require here the embedding ofM in some linear space. When, in
fact, we embedM in a linear space by using, let say, Nash’s isometric embedding to preserve
at least the quadratic part of the kinetic energy (if it exists) pertaining to the substructure,
the embedding is not unique. So, the choice of it becomes matter of modeling. Moreover,
the embedding is also not strictly necessary to build up the structures needed for the basic
aspects of mechanics. For this reason, with the aim to eliminate overstructures as much as
possible, we considerM in its abstract setting, not embedded a priori in a linear space.

We denote with〈·, ·〉TM the scalar product overTνM associated withgM. For any
C1-curve [0, s∗] � s �−→ ν(s) ∈M, we have a vector fieldυ(s) = (dν/ds)(s), and for any
other vector fieldA(s) overMone defines its derivative alongs �−→ ν(s) writing (DA/ds) =
∇υ(s)A, and callA autoparallel alongs �−→ ν(s) when (DA/ds) = 0 for anys ∈ [0, s∗]. As
usual,s �−→ ν(s) is ageodesicwhens �−→ υ(s) is autoparallel along it.

The Riemannian structure assures the existence of a natural distancedM :M×M→
R

+ overM. In fact, by indicating withλ any arbitrary piecewiseC1 curveλ : [0, s∗] →M
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such thatλ(0) = ν1 andλ(s∗) = ν2, as usual we put

dM(ν1, ν2) = inf {l(λ)}, (2)

varyingλ betweenν1 andν2, with l(λ) the length

l(λ) =
∫ s∗

0

〈
dλ

ds
(s),

dλ

ds
(s)

〉(1/2)

TM
ds (3)

(see, e.g.[1] Chapter 2,[33] Chapter 4 ). Locally,dM is calculated over geodesics and may
be unbounded. In this case, we select a new metricd̃M :M×M→ R

+ overMdefined by

d̃M = dM

1 + dM
, (4)

which is equivalent todM (it leads to the same topology), is bounded, is of classC∞(M),
if dM is complete onM, thend̃M is complete too. Moreover, the following statements are
equivalent: (i)dM is complete, (ii) closed bounded sets with respect todM are compact,
(iii) geodesics fordM can be continued as to be defined on the whole real line ([19], p.
56). IfM is complete, the distancedM can be computed over geodesics not only locally,
but also globally.

Remark 1. WhenM is compact,dM :M×M→ R
+ is bounded, then it is not necessary

to substitute it with̃dM.

By making use of̃dM we may define three natural distances overCν.

1. The first metric distance, indicated withd(i) , may be defined by

d(i) (ν̃1, ν̃2) =
∫
B0

d̃M(ν1, ν2) d(vol), (5)

where (i) stands for ‘integral’.
2. Let {Kn} be an exhaustion ofB0 , i.e. a compact cover ofB0 such thatKn ⊂ K̊n+1 for

anyn. A second distance, indicated withd(c), may be defined by

d(c)(ν̃1, ν̃2) =
∑
n∈N

1

2−n
max
X∈Kn

d̃M(ν1, ν2), (6)

where (c) stands for ‘compact’.
3. More simply, a third natural distance, indicated withd(s), may be defined by

d(s)(ν̃1, ν̃2) = sup
X∈B0

d̃M(ν1, ν2), (7)

where (s) stands for ‘supremum’.

Remark 2. There is a peculiar physical difference between the metricd(c) and the other
two: the exhaustion ofB0 by compact sets, used to defined(c), implies that the values of the
order parameter map over boundary points ofB0 may contribute slightly to the distance in
Cν, on the contrary of the other two metrics. In a certain sense,d(c) seems to be preferable
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when there are uncertainties in the physical meaning of boundary data aboutν, a problem
(the one of boundary data) that appears very subtle for some material substructures like
microcracks.

Remark 3. Notice thatd(c) andd(s) are complete overC0(B0,M) if d̃M is complete. In
particular, compactness ofM is sufficient for the validity of this statement.

Remark 4. The space of continuous maps betweenB0 andM, namelyC(B0,M), may be
in generalnot completewith respect to the metricd(i) . Examples can be constructed when
M is not compact and when it is compact. Just to mention a simple case, let us consider a
body coinciding with a cube made of a porous solid containing superfluid helium for half
of the volume of voids (M coincides withS1 ⊂ C, thus it is compact). In this case we may
construct a sequencẽνk ∈ C(B0,M) that converges in the metricd(i) to a discontinuous
function describing the percolation of Helium up to saturate half of the cube.

Remark 5. The metricd(i) in (5) may furnish unreasonable results for unbounded bodies.
In fact, if we consider an infinite beam made of a two-phase material (M = [0, 1]), we may
found two distributions of the two phases (sayν̃1 andν̃1 with ν the volume fraction of one
phase) differing just by mirror symmetry such thatd(i) (ν̃1, ν̃2) = +∞. In the same cased(c)

andd(s) (see(6) and (7)) furnish bounded results.

To control the behavior of the derivatives ofν, basically of ∇ ν̃ with
∇ν ≡ ∇ ν̃(X) ∈ Hom(TXB0, TνM), we find problematic to act directly on Hom(TB0, TM).
In fact, when we select̃ν1 and ν̃2, at a givenX, we get in generalν1 �= ν2 so that we get
∇ν1 ∈ Hom(TXB0, Tν1M) and ∇ν2 ∈ Hom(TXB0, Tν2M). ThoughgM induces natural
metric structures overT ∗M and tensor product bundles ofTM andT ∗M, it does not
give a natural way of comparing∇ν1 and ∇ν2 because∇ν is in certain sense like the
two-point tensorF. To compare them it is then necessary to transport∇ν2 overν1 through
a connection or∇ν1 over ν2. Since we do not assign any prevalent rôle to Levi–Civita
connection, even in the case in whichM is complete and we may connectν1 andν2 with
a geodesic, we face the circumstance that the transport is in general not isometric, so that
the comparison (defined in some way) of the two derivatives atν1 may lead to a different
result of the same comparison atν2. Moreover, the transport could be unbounded or the
bound could not be uniform over the curve connectingν1 with ν2. The possible choice
to consider admissible only values overM that can be connected by curves assuring a
uniformly bounded transport could reduce too much the generality ofM.

By considering previous remarks, we consider first the adjoint of∇ ν̃, indicated with∇ ν̃∗
and such that∇ν∗ ≡ ∇ ν̃∗(X) ∈ Hom(T ∗

ν1
M, T ∗

XB0), then we define

d̄M(∇ν1, ∇ν2) = ‖∇ν∗
1∇ν1 − ∇ν∗

2∇ν2‖, (8)

where‖ · ‖ is the usual norm inR3 ⊗ R
3, i.e. the usual norm of 3× 3 matrices such that,

for anyA ∈ R
3 ⊗ R

3, one has‖A‖ =
√

tr(ATA) and∇ ν̃∗∇ ν̃ is the pull-back inB0 of the
metricgM inM, in coordinates (∇ ν̃∗∇ ν̃)AB = ∇ ν̃∗α

A (gM)αβ∇ ν̃
β
B.

Remark 6. d̄M(∇ν1, ∇ν2) compares values of the metricgM at two different points
(namelyν1 andν2) ofM. The scalar product∇ν∗

1∇ν1 · (dX ⊗ dX) is the ‘length’ of dν atν1.
With d̄M as above, we define the counterparts of the distances(5)–(7).
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4. The first distance, indicated with̄d(i) , is defined by

d̄(i) (∇ ν̃1, ∇ ν̃2) =
∫
B0

d̄M(∇ν1, ∇ν2) d(vol). (9)

5. Let {Kn} be an exhaustion ofB0, i.e. a compact cover ofB0 such thatKn ⊂ K̊n+1 for
anyn. The second distance, indicated withd̄(c), is defined by

d̄(c)(∇ ν̃1, ∇ ν̃2) =
∑
n∈N

1

2−n
max
X∈Kn

d̄M(∇ν1, ∇ν2). (10)

6. More simply, a third natural distance, indicated withd(s), can be defined by

d̄(s)(∇ ν̃1, ∇ ν̃2) = sup
X∈B0

d̄M(∇ν1, ∇ν2), (11)

when supX∈B0
d̄M remains bounded overB0.

Remark 7. We do not introduce any ‘normalization’ of the distance like the one in(4)
because(9)–(11)are calculated over bundles whose fibers are linear spaces so thatd̄M(·, ·)
displays possible properties of homogeneity (natural over fiber spaces) while a normaliza-
tion like (4) would not.

Appropriate topologies onCν may then be induced by the distances

d̃(i) (ν̃1, ν̃2) = d(i) (ν̃1, ν̃2) + a(i) d̄(i) (∇ ν̃1, ∇ ν̃2), (12)

d̃(c)(ν̃1, ν̃2) = d(c)(ν̃1, ν̃2) + a(c)d̄(c)(∇ ν̃1, ∇ ν̃2), (13)

d̃(s)(ν̃1, ν̃2) = d(s)(ν̃1, ν̃2) + a(s)d̄(s)(∇ ν̃1, ∇ ν̃2), (14)

wherea(i) , a(c) anda(s) are constants introduced to adjust physical dimensions; they are of
the type (length)2.

Remark 8. WhenM is per se a linear space or for reasons of modeling is embedded
isometrically in a linear space, the results in[2] and[18] apply directly to characterize the
topological properties of the spaceC.

2.2. Something more about kinematics

Motions are sufficiently smooth curves overC. For a given interval of time [0, t̄], we then
have mappings [0, t̄] � t �−→ (x̃t , ν̃t) ∈ C and indicate withx = x̃(X, t) andν = ν̃(X, t) the
current place att of a material element resting atX whent = 0 and the current value of the
order parameter.

With ẋ andν̇ we denote rates given by (dx̃/dt)(X, t) and (d̃ν/dt)(X, t) respectively, with
ν̇ ∈ Tν̃(X,t)M. They have counterpartsv andυ in the current placeB given by

B× [0, t̄] � (x, t)
ṽ�−→ v = ṽ(x, t) ∈ TxB (15)

and

B× [0, t̄] � (x, t)
υ̃�−→ υ = υ̃(x, t) ∈ Tν̃(x(X,t),t)M, (16)
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obtained through the mappingX �−→ x = x̃(X) at eacht. We haveẋ = v but υ = ν̇ +
(gradν)v and we may write alsoυ = ν̇ + (∇ν)F−1v = ν̇ − (∇ν)Ẋ, whereẊ is the material
velocity−F−1v associated with the inverse mappingX = x̃−1(x, t). For the acceleration of
the order parameter we have

ν̈α = ∂tν̇
α + �̆α

βγ ν̇βν̇γ (17)

with

�̆α
βγ = 1

2g
αδ
M(∂νγ (gM)βδ + ∂νβ (gM)γδ − ∂νδ (gM)βγ ) (18)

Christoffel symbols relevant forM. The expression(17)enters the representation of possible
inertial terms pertaining to the substructure.2

Let g be the metric in the ambient space (in general, for curved frames we havex �−→
g(x), i.e.g depends on the place), by indicating withFT the transpose ofF, the mapping

B0 � X �−→ (FTF) ≡ C(X) ∈ Sym+(TXB0, T ∗
XB0) (19)

is the pull-back ofg through the deformatioñx and in coordinates we haveCAB =
(FT)iAgijF

j
B.

If γ is the ‘material’ metric (even flat) inB0 (i.e. B0 � X �−→γ̃ γ = γ̃(X) ∈
Sym+(Vec, Vec)), the difference (C− γ)(X) is twice the non-linear deformation tensor
E(X) measuring relative changes of lengths by usingB0 as paragon setting. In an alterna-
tive point of view, we may considerB as paragon setting pushing forwardγ and comparing
lengths there as explained in all treatises on non-linear elasticity of simple bodies in chapters
dealing with measures of deformation.

In the case of complex bodies the matter may be more intricate and a general (in certain
sense abstract) treatment of measures of deformation seems to be absent (the only exception
being the basic remarks in[5]). The key point is the specific nature ofν. In fact, whenν
represents, e.g., a microdisplacement, an independent rotation or an independent deforma-
tion, its gradient enters the measures of deformation together withν itself. On the contrary,
whenν describes a property not related strictly with changes of lengths (say in the case in
which ν represents the volume fraction of a phase in a two-phase material or the sponta-
neous polarization in ferroelectrics, etc.), standardC andE, or their spatial counterparts,
are sufficient to measure the macroscopic deformation.

In general, we could imagine to have a map of the type

(F,g, ν, ∇ν) �−→ G(F,g, ν, ∇ν) ∈ Sym+(TXB0, T ∗
XB0) (20)

with G a metric inB0 involving the pull-back ofg, and to define a deformation tensorĒ(X)
as (1/2)(G − γ)(X), erasingν and/or∇ν each time in which circumstances suggest such a
cancellation.

Of course, the information furnished by(20)is rather volatile unless we put it in a context
specifying its nature for some particular substructure.

Remark 9. Cosserat[10] and micromorphic[28] materials are well-known classes of
complex bodies in which the order parameter (or its gradient) affects the representation of

2 The influence of̆γ on inertia is discussed in[7].
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the measures of deformation (see also essential remarks in[4]). In the former class each
material element is pictured as a ‘small’ rigid body that may undergo rotations independent
of the surrounding material elements. Of course, neighboring relative rotations may alter
lengths, in a sense described e.g. in[10] or [4]. In the latter class one imagines that each
material element may suffer independent deformations (it is like a ball of rubber). Measures
of relative deformations may be then introduced. Less popular is the case of microcracked
bodies and we give some details about it in order to construct an explicit example of the
possible influence of the order parameter and its gradient on the measures of deformation.
In fact, when microcracks are smeared throughout a body, the material element is pictured
as a ‘patch’ of matter endowed with a population of microcracks that can be considered
either as planar sharp defects not interpenetrated by interatomic bonds or as elliptic voids
with non-null volume and one dimension very small with respect to the others. If we
considerfrozenthe microcracks in a given material element placed atX in B0, a standard
deformationx̃ puts it (or better its centre of mass) in the placex = x̃(X). Now, if we allow
the microcracks to deform (say without growing irreversibly for the sake of simplicity),
the centre of mass of each material element undergoes in principle a shift3 toward a new
placex′. If we indicate withB′ the minimal regular region containing the collection of
x′, each one corresponding to eachx, we may imagine to obtainB′ from B by means
of a sufficiently smooth mappingf such thatx′ = (f ◦ x̃)(X) and f(B) = B′. By denoting
with grad the gradient with respect tox, as before, by chain rule we get∇(f ◦ x̃)(X) =
((gradf)∇x̃)(X) = F(m)F, whereF(m) = (gradf)(x) is the gradient of deformation from
B to B′, i.e.,F(m) = Hom(TxB, Tx′B′). If we indicate withd(X) = (f ◦ x̃)(X) − x̃(X) the
displacement fromx to x′, defined as a field overB0, since∇d(X) = (gradda)F, with
da = d ◦ x̃−1, we get the additive decomposition∇(f ◦ x̃)(X) = F + ∇d(X). If we write
Ftot = F + ∇d(X), Ftot is the gradient of deformation fromB0 to B′. So that the right
Cauchy-Green tensorCtot(X) = FT

totFtot involves∇d. Moreover, by comparing the additive
decomposition ofFtot with the multiplicative one, namelyF(m)F, we realize thatF(m) =
I + ∇d(X)F−1 = I + gradda. The direct (perhaps naive) description of the kinematics of
microcracked bodies just sketched here follows[21,26]; however, it can be obtained by
using the procedure involving the limit of bodies described in[12,13].

2.3. Observers

Three geometrical environments are necessary to describe the motion of a complex body:
the time interval [0, t̄], the ambient spaceE3 (of courseE2 or E1 if we deal with two- or
one-dimensional bodies) andM.

In classical mechanics an observer is arepresentationof the measure of time and the
ambient space so that changes of observers are changes of representation.

Here, our point of view is that the notion of observer should involve all the descriptors of
the morphology of the body and its motion. Then, for us,an observerO is a representation
of (i) the interval of time, (ii) the ambient spaceE3 and (iii) the manifoldM of substructural
shapes[25].

3 Here the circumstance that there is a population of microcracks in the material element and that each microcrack
is not a spheric void is crucial.
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Such a definition is a natural extension of the standard point of view including just (i)
and (ii): it takes into account the presence of the manifoldM of substructural shapes as
natural geometric ingredient in the representation of the body.

For the sake of simplicity we shall consider observers coinciding about the measure of
time.

General changes of observers, as used below, will then involve automorphism ofE3 and
the action of arbitrary Lie groups overM. In this sense the notion of change of observers
involves the pair of one-parameter families of transformations indicated below.

A1. R
+ � s2 �−→ f 2

s2
∈ Aut(E3), with f 2

0 the identity.4 We assume that eachf 2 is sufficiently
smooth and putf 2′

0 (x) = v, where the prime denotes differentiation with respect tos2.
A2. A Lie groupG, with Lie algebrag, acts overM. If ξ ∈ g, its action overν ∈M is

indicated withξM(ν). By indicating withνg the value ofν after the action ofg ∈ G,
if we consider a one-parameter smooth curveR

+ � s3 �−→ gs3 ∈ G overG, such that
ξ = (dgs3/ds3)|s3=0, and its corresponding curves3 �−→ νgs3

overM, starting from a
givenν, we haveξM(ν) = (d/ds3)νgs3

|s3=0.

We specify for future use in special cases the relations characterizing ‘rigid’ changes of
observers, i.e. the ones characterized by the contemporary action of SO(3) onM andE3.
The latter action is induced by standard isometric transformations of point space.

Let [0, t̄] � t �−→ Q(t) ∈ SO(3), withQ(0) =IdSO(3), Id the identity, be a smooth curve
on SO(3). Let alsoO be an assigned representation ofE3 at t = 0. At any t �= 0 we may
associate an observerO′

t obtained fromO by means ofQ(t). The transformation fromO to
O′

t is isometric, then a pointx seen byO is mapped in a pointx′ = w(t) +Q(t)(x − x0),
wheret �−→ w(t) is an arbitrary point valued function smooth in time andx0 a fixed point
chosen at will in space. If we calculate the rate ofx′ and pull-back it inO writing ẋ∗ for
QTẋ′, we get the standard relation

ẋ∗ = ẋ + c(t) + q̇ ∧ (x − x0), (21)

characterizing a classical change of observer, wherec = QTw is the translational velocity
and q̇ the rotational one (it can be considered as the action of SE(3) over Vec, the affine
translation space overE3). If the elemenṫq∧ of the Lie algebraso(3), selected arbitrarily
in (21), acts also onM, at eachν it induces a rate (that we call ‘rigid’, with the subscript
R, just for reminding the circumstance that it is related to a spatial rigid body motion)
given byAq̇ ∈ TνM, whereA(ν) ∈ Hom(Vec, TνM). If νq denotes the value ofν after the
action of SO(3) overM, we haveA = (dνq/dq)|q = 0, whereq is a vector connected with
Q ∈ SO(3) by the formulaQ = exp(−eq), with e Ricci’s permutation index. For example,
letM be coincident withS2 as in the case of magnetostrictive materials). For anyτ ∈ S2,
we getτq = Qτ, thenA = −τ∧. Then the corresponding change in observer corresponding
to (21) is given by

ν̇∗ = ν̇ +Aq̇. (22)

4 Aut(E3) is the group of automorphisms ofE3.
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In a multifield setting,classicalchanges in observers coinciding about the measure of time
are then given by(21) and (22).

2.4. Relabeling

Another transformation playing a role below is therelabelingof material elements in
the reference placeB0. With the term ‘relabeling’ we indicate a generic transformation
of B0 induced by aC1(B0) point valued mappingf 1 such that (i) it isisocoric (i.e. the
volume is preserved) and (ii) establishes also a diffeomorphism betweenB0 and f 1(B0).
From a physical point of view, the important part of the action off 1 relies in a sort of
‘permutation’ of possible defects or, better, inhomogeneities inB0. In particular, we will
consider a one-parameter family of such isocoric diffeomorphisms defined below:

A3. R
+ � s1 �−→ f 1

s1
∈ S Diff(B0) is a smooth curve withf 1

0 the identity; at eachs1 we
getX �−→f 1

s1
(X), with Div f 1′

s1
(X) = 0, where the prime denotes differentiation with

respect to the parameters1. We putf 1′
0 (X) = w.

3. Lagrangian 3+1 forms and balance equations

The multifield theoretical analogue of the theory of elasticity for complex bodies (i.e.,
bodies with material substructure) relies on rather articulated fiber bundles.

We start by considering a fiber bundleπ : Y→ B0 × [0, t̄] such thatπ−1(X, t) =
E3 ×M. A generic sectionη ∈ �(Y) of Y is thenη(X, t) = (X, t, x, ν). For sufficiently
smooth sections, the first jet bundleJ1Y over Y is such thatJ1Y � j1(η)(X, t) =
(X, t, x, ẋ,F, ν, ν̇, ∇ν).

Up to this point the discussion has been purely geometric. No issues related with the
constitutive nature of the body and with the interactions arising inside it have been discussed.
They enter into play here: we assume that the general body under examination is made of
(non-linear) elastic material. In this case we may associate with it the canonical Lagrangian
3 + 1 form

L : J1Y→ ∧3+1(B0 × [0, t̄]). (23)

The definition of the elements of the space of 3+ 1 forms∧3+1(B0 × [0, t̄]) would require
some care. In fact,B0 × [0, t̄] is a manifold with boundary coinciding only with{0} ×
B0 ∪ {t̄} × B0 (becauseB0 is open and coincides with the interior of its closure), while
the definition of odd forms is immediate on manifolds without boundary. However, one is
commonly interested in evaluating the variation of the total Lagrangian

L̄(B0) =
∫
B0×[0,t̄]

L(j1(η)(X, t)); (24)

so that, in definingL(j1(η)), possible problems related with boundary points do not play
any role.L admits the structure

L(j1(η)(X, t)) = L(X, x, ẋ,F, ν, ν̇, ∇ν) d3X ∧ d t (25)
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with

L(X, x, ẋ,F, ν, ν̇, ∇ν) = 1
2ρ0 |ẋ|2 + ρ0χ(ν, ν̇) − ρ0e(X,F, ν, ∇ν) − ρ0w(x, ν),

(26)

whereρ0 is the referential mass density (conserved during the motion),χ the substructural
kinetic co-energy(needed when physical circumstances prescribe substructural inertia),e
the elastic energy density andw the density of the potential of external actions, all per unit
mass. The presence ofν in the list of entries ofχ ande is due to the non-trivial structure
ofM. In general the elements ofTM cannot be separated invariantly unless a parallelism
can be found overM. From classical non-linear field theories we know thatx disappears
from the list of entries ofe due to reasons of invariance, butν does not (see[4]).

We assume thatL(·) be sufficiently smooth so that we may find at least one sectionη

satisfying Euler–Lagrange equations

˙
∂ẋL = ∂xL− Div ∂FL, (27)

˙
∂ν̇L = ∂νL− Div ∂∇νL. (28)

With respect to the families of transformations characterizing relabeling and changes of ob-
servers, for the sake of brevity, we indicate withf 1, f 2 andνg the valuesf 1

s1
(X), f 2

s2
(x),νgs3

(X).

Definition 1. L is invariant with respect to the action off 1
s1

, f 2
s2

andG if

L(X, x, ẋ,F, ν, ν̇, ∇ν)

= L(f 1, f 2, (gradf 2)ẋ, (gradf 2)F(∇f 1)−1, νg, ν̇g, (∇νg)(∇f 1)−1), (29)

for anyg ∈ G ands1, s2 ∈ R
+.

LetQ andF bescalarandvectordensities given respectively by

Q = ∂ẋL · (v − Fw) + ∂ν̇L · (ξM(ν) − (∇ν)w), (30)

F = Lw + (∂FL)T(v − Fw) + (∂∇νL)∗(ξM(ν) − (∇ν)w), (31)

where (∂∇νL)∗ ∈ Hom(TνM, TXB0) and (∂FL)T ∈ Hom(TxB, TXB0).

Theorem 1 (Capriz and Mariano[9]). If L is invariant underf 1
s1

, f 2
s2

and G, for anyg ∈ G

ands1, s2 ∈ R
+, then

Q̇+ Div F = 0. (32)

The detailed proof is contained in[9]. Here we remind only that it is based on a direct
explicit calculation of the terms in(32)on the basis of(30) and (31), and on the exploitation
of the relations

d

ds1
L|s1=0,s2=0,s3=0 = 0,

d

ds2
L|s1=0,s2=0,s3=0 = 0,

d

ds3
L|s1=0,s2=0,s3=0 = 0, (33)

which are consequences of the request of invariance forL.
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The following corollaries hold true for any Lagrangian density of the type(26)which is
invariant in the sense ofDefinition 1 [9]:

Corollary 1. If f 2
s2

alone acts onL leavingv arbitrary, from (32) we get Cauchy balance
of momentum

ρ0ẍ = ρ0b+ Div P, (34)

whereP = −∂FL ∈ Hom(T ∗
XB0, T ∗

x B) is the first Piola–Kirchhoff stress andρ0b = ∂xL ∈
T ∗
x B the vector of body forces.

Corollary 2. If G arbitrary acts alone onL, from (32)and the arbitrariness of the element
ξ of the Lie algebra of G(chosen to defineξM(ν)) we get Capriz balance of substructural
interactions

ρ0( ˙
∂ν̇χ − ∂νχ) = −z+ ρ0β

ni + Div S, (35)

in covariant way, whereρ0β
ni = −ρ0∂νw ∈ T ∗

νM represents bulk non-inertial external
interactions acting on the substructure, S = −∂∇νL ∈ Hom(T ∗

XB0, T ∗
νM) takes into ac-

count contact substructural interactions between neighboring material elements(and is
called microstress) andz = −ρ0∂νe ∈ T ∗

νM indicates self-interactions of the substructure
in each material element(and is called self-force).

Corollary 3. Let G = SO(3)and, for any elemenṫq∧ of its Lie algebra, f 2
s2

be such that
v = q̇ ∧ (x − x0) with x0 a fixed point in space. In other words, we require that the same
copy ofSO(3)acts both on the ambient space and onM. If we require the invariance ofe
with respect to the action of the special choices of G andf 2 just mentioned, we obtain

skw(∂FeFT) = e(AT∂νe + (∇AT)t∂∇νe), (36)

wheree is Ricci’s alternator andskw(·) extracts the skew-symmetric part of its argument.
The previous statement render more perspicuousRemark 3of [9].

Corollary 4. If f 1
s1

alone acts onL, withw arbitrary, from (32)we get

˙
(FT∂ẋL+ (∇ν)∗∂ν̇L) − Div(P − ( 1

2ρ0|ẋ|2 + ρ0χ(ν, ν̇))I ) − ∂XL = 0, (37)

whereP = ρ0eI − FTP− (∇ν)∗S ∈ Aut(T ∗
XB0), with I the second order unit tensor, is

the modified Eshelby tensor for continua with substructure derived in the general setting
in [22,23]. In particular, (37) coincides with the balance of configurational forces for a
continuum with substructure in absence of dissipative internal forces driving defects. The
balance(37), in fact, is only a consequence of the invariance with respect to relabeling.

Corollary 5. Let G = SO(3)and, for any elemenṫq∧ of its Lie algebra, f 1
s1

be also such
thatw = q̇ ∧ (X − X0) with X0 a fixed point inB0. If the material is homogeneous, and
only such special choices off 1

s1
and Gact onL, P is symmetric.

Remark 10. It may be asked whether or not an integral version of(35)can be postulated as
integral balance principle of substructural interactions and then used as a first principle. In
general the answer is negative unlessM is a linear space or is embedded in a linear space.
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The reason relies upon the circumstance that the eventual integrandsβ, z andSn would
take values inT ∗M which is a non-linear space unless the above mentioned situations of
linearity forM occur, so the integrals are not defined. In other words, each time we use
an integral version of(35) we presume implicitly an embedding in a linear space; on the
contrary it does not make sense.

4. Discontinuity surfaces

In common special cases, solutions of(27) and (28)or, with other notations, of(34)
and (35)are not smooth and may display discontinuities concentrated on submanifolds
of codimension 1. Moreover, experiments display domain formation and branching of mi-
crostructures of various nature (see e.g. cases of nematic order in liquid crystals, polarization
in ferroelectrics, magnetization in micromagnetics, superconducting domains, etc.).

The presence of the gradient of the morphological descriptor in the list of entries of
the energy accounts for the presence of interfaces of domain walls in a smeared sense.
However, one may ask what happens when additional discontinuity surfaces occur and
there isinteraction between smeared and sharp interfaces. As an example, the us consider
the solidification of a two-phase flow[24]. Two types of interfaces occur in this case:
interfaces between the two phases of the fluid that interact with the interface between solid
and fluid parts (when it is considered as a sharp interface) and influence its evolution.

Really, even in single phase complex materials the energy may depend on the gradient
of the order parameter to account for the inhomogeneous behavior of substructures. For
example, in the case of micromorphic materials, each material element is a cell that may
undergo micro-deformation independently of the neighboring cells, in addition to the partic-
ipation to the overall macroscopic deformation[28]. The morphological descriptor is then
a second-order symmetric tensor representing such an additional independent deformation.
Such a situation may be representative of the behavior of elastomers, for example. Adja-
cent material elements may then undergo in principle different micro-deformations so that,
in going from one element to the other, the energetic landscape changes in accord to the
gradient of the micro-deformation and weakly non-local interaction effects of gradient type
between neighboring material elements may be accounted for. Even in this case, additional
discontinuity surfaces may occur as defects or shock and acceleration waves. Energetic
effects associated with the gradient of the micro-deformation may influence them.

Analogous situation occurs also in quasicrystals where collective atomic modes (pha-
son degrees of freedom) occurwithin each crystalline cell (the material element) and are
represented by a stretchable vector. The energy depends both on the standard strain and the
gradient of such a vector[31]. Even in this case, discontinuity surfaces such as (e.g.) cracks,
dislocations or shock waves may intervene. Their behavior is influenced by the energetic ef-
fects associated with the gradient of the order parameter (here the vector mentioned above)
but they are not strictly modeled by means of it.

The physical examples above allow us to clarify the point of view followed below.We
treat, in fact, situations in which smeared interfaces or gradient effects due to inhomoge-
neous behavior of material substructures interact with sharp interfaces or, more generally,
discontinuity surfaces.
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In particular, we focus our attention on a single discontinuity surface/ defined by

/ ≡ {X ∈ clB0, f (X) = 0}, (38)

with f a smooth function with non-singular gradient. It is oriented by the normal vector field

/ � X �−→m̃ m = m̃(X) = ∇f (X)/|∇f (X)| and we use the notation1 for the second order
tensorI −m ⊗m.

For any field ˜e(·) continuous and piecewise continuously differentiable on/, we indicate
with ∇/e its surface gradientatX, with e = ẽ(X), given by∇/e = ∇e1. The opposite of
the surface gradient ofm, namely−∇/m is indicated withL and is the curvature tensor.

Let X �−→ a = ã(X) be a generic field taking values in a linear space and suffering
bounded discontinuities across/. Forε > 0 we indicate witha± the limits limε→0 a(X ±
εm) which are the outer (a+) and inner (a−) traces ofa at /. Then we denote with [a] =
a+ − a− the jump ofa across/ and with 2〈a〉 = a+ + a− its average there, so that for any
pair of fieldsa1 anda2 with the same properties ofa we have [a1a2] = [a1]〈a2〉 + 〈a1〉[a2]
if the producta1a2 is defined in some way and is distributive.

/ is coherentwhen the jump of the gradient of deformationF (see Section2) satisfies
the relation [F]1 = 0, otherwise it is calledincoherent. In other words the two pieces of
the body separated by the surface do not suffer relative shear.

Moreover, if we attribute any ‘virtual’ motion to/ by means of a vector field/ �
X �−→ũ u = ũ(X) ∈ R

3 with normal componentU = u ·m and assume that the velocityẋ
may suffer bounded jumps across/, we get the condition [̇x] = −U[F]m, whose proof is
textbook affairs.

As essential point we assume also that the morphological descriptor mapν̃ iscontinuous
across/. A special case in which such an assumption plays a prominent role is Landau’s
theory of phase transitions.

4.1. The unstructured case

We treat first the case in which/ is unstructured, i.e. it is free of own surface energy.
We derive the balance equations across/ in a way that prove theircovariancewhich has
been not discussed so far. The procedure we adopt relies upon the exploitation of an integral
version of the pointwise relation(32).

We callpartany regular subsetb ofB0 with non-vanishing volume measure. We consider
an arbitrary partb/ crossing/ in a way in which the intersection of its boundary∂b/ with
/ be a piecewise smooth curve and write for it the integral counterpart of(32), namely

d

dt

∫
b/

Qd3X +
∫

∂b/

F · n dH2 = 0, (39)

with dH2 the two-dimensional Hausdorff measure over∂b/. If we take fixed the partb/
with respect to the virtual motion of/, by the use of the transport and Gauss theorems (see,
e.g.[27,35]), asb/ → b/ ∩ / we find

d

dt

∫
b/

Qd3X → −
∫
b/∩/

[Q]U dH2, (40)
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∫
∂b/

F · n dH2 →
∫
b/∩/

[F] ·m dH2, (41)

so that the arbitrariness ofb/ implies the pointwise balance

−[Q]U + [F] ·m = 0. (42)

Proposition 1. If the transformations A1, A2, A3 (seeSections2.3 and2.4) are smooth
throughout the body, the validity of(42)and the invariance ofL imply covariant pointwise
interfacial balances across/ as in the list below:

1. The action off 2
s2

alone implies the interfacial balance of standard interactions

[P]m = −ρ0[ẋ]U. (43)

2. The action of G alone implies the interfacial balance of substructural interactions

[S]m = −ρ0[∂ν̇χ]U. (44)

3. The action off 1
s1

alone implies the interfacial configurational balance along the normal
m in absence of dissipative forces driving/, namely

m · [P]m = ρ0U[(∇ν)∗∂ν̇χ] ·m + 1
2ρ0[χ(ν, ν̇)] − 1

2ρ0U
2[|Fm|2]. (45)

The proof is obtained by exploiting(42)and is contained in the one ofTheorem 2.
Balance equations at unstructured discontinuity surfaces in standard elasticity of simple

bodies are derived by means of a direct evaluation of the variation of the total Lagrangian
in [15].

4.2. The structured case

We consider here/ endowed with asurface energy densityφ associated with surface
tensions of standard and substructural nature. The presence ofφ models the circumstance
that often we have discontinuity thin layers that sustain surface tensions instead of pure
surfaces.

Let F andN be defined by

F = 〈F〉1, N = 〈∇ν〉1. (46)

They aresurface deformation gradientandsurface gradient of themorphological descriptor
atX. There exist then two mappingsF̃ andÑ such that

/ � X
F̃�−→ F = F̃(X) ∈ Hom(TX/, TxB), (47)

/ � X
Ñ�−→ N = Ñ(X) ∈ Hom(TX/, TνM). (48)

Elementary algebra provides us

〈F〉 = F + (〈F〉m) ⊗m, (49)
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〈∇ν〉 = N + (〈∇ν〉m) ⊗m. (50)

The surface energy density is then defined by

(m, F, ν,N)
φ̃�−→ φ = φ̃(m, F, ν, N) (51)

and we assume thatφ̃ be sufficiently smooth. It is worth noting that the presence of the
normalm in the list of entries of̃φ points out that we are consideringanisotropic surfaces.

We require theinvarianceof φ with respect to (i) general changes of observers and (ii)
relabeling of/.

As discussed above, changes of observers are characterized by the action of the group
of automorphisms ofE3 and of a generic Lie group overM. However, definition A3 off 1

s1
(in Section2.4) needs to be modified in order to describe the relabeling of/ in addition
to the overall relabeling ofB0. Instead ofs1 �−→ f 1

s1
we should consider a smooth curve

s1 �−→ f̂ 1
s1

in S Diff(B0) characterized by the properties listed below.
Relabeling ofB0 including/.

1. The maps1 �−→ f̂ 1
s1

satisfies A3 (in Section2.4). Moreover, we require that the field

B0 � X �−→ w = w̃(X) = f̂ 1′
0 (X) is at least of classC1(B0), then it is continuous across

/.
2. Eachf̂ 1

s1
preserves the elements of area of/. Namely, if dA is the element of area of/

in B0, f̂ 1∗
s1

◦ dA = dA, where the asterisk indicates push forward.
3. (∇w)m = 0.
4. ∇/wm = 0, with wm = w ·m and∇/ the surface gradient defined above.

Two lemmata are useful for subsequent calculations.

Lemma 1. For any isocoric vector field̃w(·) of classC1(B0),

1 · ∇/w = ((∇w)m) ·m, (52)

withw = w̃(X).

The result follows from direct calculation.
A second order tensor field/ � X �−→Ã A = Ã(X) ∈ Hom(R3, R

3) is calledsuperficial
if Am = 0 at eachX.

Lemma 2. For any second-order superficial tensor fieldÃ on/, one gets

m · Div/A = A · L, (53)

with L the curvature tensor of/, as defined above.

Definition 2. A surface energy densityφ is invariant with respect to the action off̂ 1
s1

above
andf 2

s2
, G in Section2.3 if

φ̃(m, F, ν, N) = φ̃(∇ f̂ 1Tm, (grad/ f 2)F(∇ f̂ 1)−1, νg, Ng(∇ f̂ 1)−1), (54)

for anyg ∈ G ands1, s2 ∈ R
+, whereNg = 〈∇νg〉1 and we have used notations common

to Definition 1.
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LetX be a sufficiently smooth vector density defined over/ by

X= −φ1w+ (∂Fφ)T(v− 〈F〉w) + (∂Nφ)∗(ξM(ν) − 〈∇ν〉w) − (∂mφ ⊗m)w, (55)

where (∂Fφ)T ∈ Hom(TxB, TX/) and (∂Nφ)∗ ∈ Hom(TνM, TX/).
The definition ofX (not used elsewhere) deserve physical clarifications. First we come

back to(39) reminding also the definitions(30) and (31)of Q andF. In fact, Eq.(39) is a
balance between the rate of a sort of ‘production’ of ‘relative’ inertia inb/ and an energetic
flux across its boundary∂b/. The term (v − Fw) is actually the difference in the current
placement of the body between the virtual velocity induced byf 2 and the push forward
(by means of the gradient of deformationF) of the virtual rate of relabelingw. Similar
interpretation has the difference (ξM(ν) − (∇ν)w) over the manifoldM of substructural
shapes. Moreover, when multiplied by the normaln to ∂b/, the terms ((∂FL)T(v − Fw)) · n
and ((∂∇νL)∗(ξM(ν) − (∇ν)w)) · n are respectively the power of the Piola–Kirchhoff stress
and of the microstress (see also corollaries afterTheorem 1) developed in the relative
velocities (v − Fw) and (ξM(ν) − (∇ν)w). Finally,Lw · n is the flux of energy across∂b/
associated with the rate of relabeling.

When the surface/ has energy content (as in the structured case treated here), the balance
(39) is insufficient to represent the energetic landscape around/, so that one is pushed to
insert the energetic contribution associated with the energy of/. Then, one needssurface
counterpartsof Q andF. Of course, the counterpart ofQ does not exist because/ is not
endowed withindependentinertia. On the contrary, the counterpart ofF does exist because
/ is endowed with own energyφ. It coincides withX.

By indicating withñ(·) the normal vector field along the piecewise smooth curve∂(b/ ∩
/) such that, at eachX ∈ ∂(b/ ∩ /) where it is well defined, the vectorn = ñ(X) belongs
to the tangent plane to/ at X, the productX · n is a surface energetic flux along the
tangent plane to/ at eachX ∈ ∂(b/ ∩ /) wheren is defined. In particular,−φ1w · n is the
flux of surface energy with respect to the virtual flow generated byw, while ((∂Fφ)T(v −
〈F〉w)) · n and ((∂Nφ)∗(ξM(ν) − 〈∇ν〉w)) · n are respectively the power of the standard
surface stress and the surface microstress (as it will be clear inTheorem 2) developed in the
relative velocities (v − 〈F〉w) and (ξM(ν) − 〈∇ν〉w). Finally, the term ((∂mφ ⊗m)w) · n is
the surface power of the shear stress arising from the anisotropy of/.

In summary, the construction ofX accrues from a strict physical analogy withF defined
in (31).

Below, dH1 will denote the one-dimensional Hausdorff measure along∂(b/ ∩ /).

Theorem 2. Let/ be a structured surface with surface energyφ. Let us assume

d

dt

∫
b/

Qd3X +
∫

∂b/

F · n dH2 +
∫

∂(b/∩/)
X · n dH1 = 0 (56)

for any partb/ of B0 crossing/. If L andφ are invariant with respect tôf 1
s1

, f 2
s2

and G,
covariant pointwise balances across/ follow as in the list below:

1. The action off 2
s2

alone implies the interfacial balance of standard interactions

[P]m + Div/T = −ρ0[ẋ]U, (57)
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whereT = −∂Fφ ∈ Hom(T ∗
X/, T ∗

x B) is the surface Piola–Kirchhoff stress.
2. The action of G alone implies the interfacial balance of substructural interactions

[S]m + Div/S − z = −ρ0[∂ν̇χ]U, (58)

whereS = −∂Nφ ∈ Hom(T ∗
X/, T ∗

νM) is the surface microstress andz = ∂νφ ∈ T ∗
νM

the surface self-force.
3. The action of̂f 1

s1
alone implies the interfacial configurational balance along the normal

m in absence of dissipative forces driving/, namely

m · [P]m + Ctan · L + Div/c

= ρ0U[(∇ν)∗∂ν̇χ] ·m + ρ0[χ(ν, ν̇)] − 1
2ρ0U

2[|Fm|2], (59)

where

Ctan = φ1 − F
T
T − N

∗
S (60)

is a generalized version of the surface Eshelby stress and

c = −∂mφ − T
T〈F〉m − S

∗〈∇ν〉m (61)

is a surface shear.

By following different procedures, Eq.(57)has been derived in[17] while Eqs.(58) and
(59) in [22,23](the version of(59)for simple bodies is clearly obtained in[16]). Here, with
Theorem 2 we prove their covariance: this is the main novelty of the theorem itself.

4.3. Proof of Theorem 2

Step 1. In accord toDefinition 2, sinceφ̃ is invariant, we have

d

ds1
φ̃(∇ f̂ 1Tm, (grad/ f 2)F(∇ f̂ 1)−1, νg, Ng(∇ f̂ 1)−1)|s1=0,s2=0,s3=0 = 0, (62)

d

ds2
φ̃(∇ f̂ 1Tm, (grad/ f 2)F(∇ f̂ 1)−1, νg, Ng(∇ f̂ 1)−1)|s1=0,s2=0,s3=0 = 0, (63)

d

ds3
φ̃(∇ f̂ 1Tm, (grad/ f 2)F(∇ f̂ 1)−1, νg, Ng(∇ f̂ 1)−1)|s1=0,s2=0,s3=0 = 0, (64)

which correspond respectively to

F
T
T · ∇/w + N

∗
S · ∇/w + ∂mφ · (∇w)m = 0, (65)

T · ∇/v = 0, (66)

z · ξM(ν) + S · ∇/ξM(ν) = 0. (67)

They will be useful tools below.
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Step 2. If we shrinkb/ to b/ ∩ / uniformly in time, transport and Gauss theorems (see
also(40) and (41)) allow us to obtain the pointwise balance

−[Q]U + [F] ·m + Div/X = 0, (68)

thanks to the arbitrariness ofb/. Of course, the sole difference between(68) and (42)is the
term Div/X accounting for the interfacial structure of the surface/.

Step 3. Deduction of the referential interfacial balance of standard interactions(57). If f 2

acts alone, then

X = T
Tv, Q = ρẋ · v, F = −PTv. (69)

Moreover, thanks to(66)we get

Div/X = v · Div/T. (70)

Then, from(68)we obtain(57) thanks to the arbitrariness ofv, which is continuous across
/.

Step 4.Deduction of the referential interfacial balance of substructural interactions(58).
If G acts alone, then

X = S
∗ξM(ν), Q = ρ0∂ν̇χ · ξM(ν), F = −S ∗ξM(ν). (71)

Moreover, thanks to(67)we get

Div/X = ξM(ν) · (Div/S − z). (72)

Then, from(68) we obtain(58) thanks to the arbitrariness of the elementξ selected in the
Lie algebra ofG.

Step 5.Deduction of the balance of configurational forces along the normalm (i.e. (59)).
If f̂ 1 acts alone, then

Q = −ρFTẋ · w − ρ0(∇ν)∗∂ν̇χ · w, (73)

F = (( 1
2ρ0|ẋ|2 + ρ0χ(ν, ν̇))I − P)w (74)

and, after some algebra,

X = −C
T
tanw − cwm (75)

with Ctan andc defined respectively by(60) and (61)andwm = w ·m.

Now, Eq.(68)comes into play: we will evaluate the component alongm of the right-hand
side term of(68), a vector, by taking also into account the arbitrariness ofw.

First we write

−[Q]U + [F] ·m = ρ0[FTẋ]U · w + ρ0[(∇ν)∗∂ν̇χ]U · w
+ 1

2ρ0[|ẋ|2]w ·m + ρ0[χ(ν, ν̇)]w ·m − [P]w ·m. (76)

Moreover, by using(65)andLemma 1, we also get

Div/(CT
tanw + cwm) = w · (Div/Ctan + (Div/c)m). (77)
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Of course, in obtaining(77), properties 3 and 4 of the definition of the relabelingf̂ 1 of B0
including/ play a crucial role.

By inserting(76) and (77)in (68), thanks to the arbitrariness ofw, we obtain

ρ0[FTẋ]U + ρ0[(∇ν)∗∂ν̇χ]U + 1
2ρ0[|ẋ|2]m + ρ0[χ(ν, ν̇)]m

= [PT]m + Div/Ctan + (Div/c)m (78)

and we shall evaluate the component alongm of (78).
First we focus our attention on terms involvingẋ andν̇. Let us introduce the averaged

velocity v̄ given by

v̄ = 〈ẋ〉 + U〈F〉m. (79)

With the help of the relation [ẋ] = −U[F]m introduced previously, we then get

ρ0[FTẋ]U ·m = ρ0[ẋ] · v̄ − ρ0[|ẋ|2]; (80)

in other words the normal component of the vectorρ0[FTẋ]U is equal tominusthe jump
of the relative kinetic energy (1/2)[ρ0|ẋ − v̄|2] as it is simple to verify.

Still taking into account the relation [ẋ] = −U[F]m and the definition of̄v, we also find
1
2ρ0[|ẋ|2] = −ρ0[ẋ] · v̄ + 1

2U2[|Fm|2]. (81)

Now, by evaluating the normal component of(78), using(80), (81)and taking into account
thatm · Div/Ctan = Ctan · L as a consequence ofLemma 2, we obtain(59)and the theorem
is proven.

Remark 11. (Fields of applicability ofProposition 1andTheorem 2). The results col-
lected inProposition 1andTheorem 2can be applied in various physical circumstances in
condensed matter physics, involving the evolution of sharp defects. In particular, when/

evolves irreversibly a dissipative driving force must be added to(45) and (59)(the physical
reasons are clearly explained in[16,17] for simple bodies; the case of complex bodies is
treated in[22,23]). Examples are listed below.

1. Cracks in complex bodies.
2. Sharp interfaces between paraelectric and ferroelectric phases.
3. Evolution of sharp damage fronts.
4. Sharp interfaces between isotropic and oriented (e.g. nematic) phases (e.g. in liquid

crystals).
5. Solidification of complex fluids.
6. Growing defects in biological tissues.
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